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PREFACE 

System identification is a powerful tool in Engineering. lts various methods in thefrequency 

andin the time domain have been extensively discussed in earlier CISM courses. The aim of 

this course is to describe the state of the art in specific application areas, e.g. estimation of 

eigenquantities (in the airplane and aerospace industry, in civil engineering, in naval 

engineering etc.), noise source detection, fault detection by investigation of dynamic 

properties, such as machine sound characteristics, and the identification of the dynamic 

behaviour of jlow induced systems (e.g. aeroelastic problems). Geotechnical app/ications are 

also one of the fields of interest. 

The lecture notes contain demonstrations of several methods and inc/ude a valuation of 

combining various kinds of experience. Such complex information inc/udes not only 

theoretical aspects of identification but also advice on practical handling, e.g. concerning 

testing effort and data handling. 

The course was announced as "The Boltzmann Session·: Boltzmann, who was an excellent 

theoretical physicist as weil as a very ski/ful experimenter, once said that "nothing is more 

practical than theory". I entirely agree with him. The readerwill thusfind an introductory 

review of the identification of vibrating structures, and, of course, some more theoretically 

orientated papers. 

I wish to thank all the participants in the course for their contributions, especially the 

lecturers for the oustanding work they did in Udine and for preparing their final papers. lAst 

but not least our thanks must go to the CISM cooperatorsfor the excellent work they have 

done and for their kind hospitality. 

H.G. Natke 

Hannover. 
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INTRODUCTION TO SYSTEM IDENTIFICATION: 
FUNDAMENTALS AND SURVEY 

H.G. Natke, N. Cottla 
UniYenltlt Haaao••, ßaaaoy•, F.R.G. 

1. Fundamentals 

The application of system identification to engineer-

ing problems requires certain knowledge of 

- the inherent theoretical relations 

- the test and measuring conditions (and their inevitably 

imperfect realization) 

- the deterministic and statistical approaches in system 

identification (e.g. time series analysis). 

The content of CISM course 272 in 1980 on "Identifi-

cation of Vibrating Structures" /1.1/ and the existing 

refs. dealing wi th time series /1.2, 1.3/, time series and 
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stochastics /1.4/, and such books as contain time series 

and experimental modal analysis /1.5,1.6/, mean that the 

fundamentals of system identification only need to be sum

marized here. The term "system" is used as a synonym and 

abbreviation for mechanical systems /1.7/ to which this 

course is restricted. 

1.1 General 

The systems we are dealing with are assumed to be 

time invariant and, in addition, linear and nonlinear. The 

dynamic behaviour of the system, and the dynamic process 

the system is subjected to, can often be described by 

input/ output relations, which result in a system of equa

tions: the mathematical model. In general the goal of 

system (structure) analysis is the prediction of the dyna

mic behaviour of the system under investigation. This is 

the well-known direct problem of system analysis that re

quires sufficiently accurate system modelling and the 

knowledge of dynamic loads. On the other band, the inverse 

problem (Fig. 1.1) deale with the modelling and the design 

of the system itself (system identification, design pro

blem) and with input identification (Fig. 1.2). In the 

design problem, the input and output quantities are given 

and one is looking for a system (for its model) which 
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fulfill8 the input/output relation8 be8t. Input identifi-

c a t'i o n i 8 d e f in e d b y a g i v e n m o d e 1 d e s c r i p t i o n an d a g i v e n 

output, while 8ystem identification includes the determi-

nation of a system description by measured input and/or 

output quantities. 

FIG. 1.1 CLASSIFICATION OF 
SYSTEM ANALYSIS 

As is known, we di8tinguish between the black-box 

model and the parametric model (Fig. 1.3). The black-box 

model is a non-structured mathematical model, e.g. the 

frequency reeponee function. Parametrie system identifica-

tion uses a structured model, 80 that only it8 parameters 

are unknown, i.e. the identification problem is reduced to 

parameter e8timation. 

FIG.1.2 CLASSIFICATION OF THE 
INVERSE PROBLEM 

5 
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NON -PARAMETRie 

BLAeK -BOX MODEL 

PARAMETRie 
STRUeTURED MATH. 

MODEL 

FIG.1.3 eLASSIFIGATION OF SI 
eoNeERNING THE MATH. 
MODEL USED 

H.G. Natke- N. Cottin 

"Estimation" is used in its mathematical sense: sta-

tistical methods have to be applied, because the measure-

ments are often distorted by random errors which have to 

be reduced in order to obtain results with a large infor-

ma tion con ten t and wi th high confidence. The identifica-

tion problem is accompanied by the following practical and 

theoretical problems: test conditions (cf. Fig. 1.4) con-

cerning 

- test environment and test equipment 

- excitation 

- measurement techniques 

- data acquisition 

- signal processing including data reduction 

- noise reduction, 

considerations concerning 

- the choice of mathematical model 

- the choice of appropriate estimation methods 

- data processing (including algorithms and routines). 
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NO ISE 

EXCITATION 

FIG. 1.1. SYSTEM DISTURBANCES 

NO ISE 

RESPONSE 

The practical and theoretical problems mentioned 

above are closely connected as regards such terms as ob

servability, controllability and identifiability /1.1/. In 

addition, one has to take into account that the model is 

only an approximate description of the system and its 

dynamic behaviour, i.e. the model is not unique. This 

means, for example in the linear case, that there may be a 

minimum order model instead of the model being worked 

with, and that in the nonlinear system behaviour, for 

example, the description in the form of a polynomial is 

done with the 5th power within the required accuracy with

out one knowing that a 3rd power may already be suffi

cient. 

Dynamic investigations of complicated systems need 

system analysis: that means a computational model. If this 

model is not sufficient, i.e. if it cannot describe the 

system behaviour completely, tests have to be performed, 

7 
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and this results in a test model (e.g. input/output mea-

surements). Now two problems arise: 1) the use in general 

of insufficient a priori knowledge (computational model 

with its predictions) with regard to testing, and 2) how 

to utilize the a priori knowledge within the estimation. 

The first problern is a "philosophical" one: should verifi-

cation be done while one is influenced by knowing the 

resul ts of the mathematical model (cri tical engagement)? 

COMPUT ATIONAL 
MODEL 

TEST 
MODEL 

,----
1 

-----------, 

I 
I 
I 
I
I 
I 
I 
I 
I 

IMPROVEMENT 
PROCEDURE 

icHolc"EoFi 
L~L~~!!~~J 

I ___ L __ _ 

VERIFI· 
CATION 

FORECAST: 
ESTIMATION 

NON-PARA- PARA
METRIC METRIC 

I 
I 
I 
I 

-~ 
I 
I 
I 
I 
I 

--j 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I j CHOICE OF i 

~.5~~~IQ~J 
________ j 

FIG.1.5 COMPARISON OF RESULTS OF SYSTEM 
ANALYSIS AND SYSTEM IDENTIFICATION WITH 
FOLLOWING PARAMETER IMPROVEMENT 
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All a priori knowledge should be included in the testing. 

The solution of the second problem is indicated in Fig. 

1.5. The prediction of the computational model has tobe 

compared with the corresponding quantities of the test 

model. These are, of course, estimated values (noise re

duced) from the Observations. If the predicted and fore

esst results do not lead to a verification within a given 

quality criterion, then the computational model generally 

has to be improved. In parameter estimation the Bayesian 

approach permits the inclusion of a priori knowledge. 

In system identification the mathematical tools are 

statistical methods. With regard to data processing, for 

the reduction of measurement noise and for non-parametric 

identification use is made of the Fourier transform and 

Laplace transform with their numerical procedures for 

handling linear systems and of the Hilbert transform for 

detecting non-linearities. 

1 .2 Structural Model 

The fundamentals of system analysis are given here 

from a practical point of view by a discretized (with 

respect to the local coordinates) model of n degrees-of

freedom: 

9 
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MÜ(t) + BÜ(t) + ICa(t) = p(t) ( 1 • 1 ) 

with the quadratic physical parameter matrices of order n, 

M the inertia matrix 

B the viscous damping matrix and 

K the stiffness matrix, 

u(t) is the vector of generalized coordinates with 

t the time parameter, 

p(t) is the vector of external forces. 

Dots indicate differentiation with respect to time. 

Eq. (1.1) is, for example, generated by finite element mo

delling. Here the assumption of viscous damping is ar

bitrary from the physical point of view. For hysteretic 

damping see /1.5/· Eq. (1.1) is a mathematical model with 

given structure and with given order n. The associated 

unstructured model in the frequency domain is defined by 

S(jw) U(jw) = P(jw) resp. U(jw) = F(jw) P(jw) 

with 

U(jw) ·- F {a(t)} , F : symbol for Fourier trauform 

P(jw) := F {p(t)} , 
S(jw) dyaamlc stlffaess mat.rlx 

F(Jw) := S-1(jw) freqaellC)' respoue matrlx 

aad with hütlal coaditioas eqaal to zero. 

( 1 • 2) 



www.manaraa.com

Introducdon 11 

These equations do not imply only the definitions and 

inter p r e tat i o n s o f S ( j w) an d F ( j w) b u t also t h e i r c a l c u-

lation in the case of non-erroneous data. If one denotes 

the Laplacian transform by and the Laplacian variable byL 

s, i.e. 

U(s) == L {u(t)} , 

P(s) == L {p(t)} , 

S(s) dynamic stiffness matrix in the s domain, 
( 1 • 3) 

H(s) == s-1(s) transfer function matrix, 

the equations corresponding to Eq. U. 2) are 

S(s) U(s) = P(s) and U(s) = H(s) P(s) respectively. 

If the knowledge of the modal quantities of the asso-

ciated undamped model and of the viscous damped model are 

required, a structured mathematical model has, of course, 

tobe used: 

( 1 • 4) 

( 1 • 5 ) 

The mathematical properties of the matrix eigenvalue pro-

blems and their solutions are well-known /1.1,1.5,1.8/ and 

therefore not repea ted here. Only the orthogonali ty rela-
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tions are summarized in the undamped case (for symmetric 

K): 

( 1 • 6) 

Sik- Kronecker symbol, 

and in general for viscous damping: 

where 

( 1 • 7) 

1\B:= diag 0.B 1 ), (2n, 2n) diagonal matrix of 

eigenvalues, 

UB:= (n, 2n) modal matrix of right eigenvectors, 

VB:= (n, 2n) modal matrix of left eigenvectors 

( ••• )T describes the transposed matrix ( ••• ) and I stands 

for the identity matrix. 

It can be shown that the physical parameter matrices 

M, B and K can be expressed by the modal quantities, 

therefore both representations are theoretically equi-

valent. For the undamped model with symmetric matrices it 

follows from the orthonormalization with the (n,n)-modal 

matrix U0 in the normalization mgi = 1 that 



www.manaraa.com

Introducdon 13 

The frequency response matrix can then be expressed by 

The importance of the dyadic products of the eigen-

vectors can be seen. The flexibility influence coeffi-

cients are proportional to the square of reciprocal eigen-

frequencies. The frequency response matrix shows the reso-

nance phenomenon. In addition, because of its symmetry and 

structure only.one row is necessary in order to estimate 

the eigenfrequencies and damping ratios. 

Corresponding relationships exist for the damped sy-

stem /1.1,1.5/ where a distinction should be made between 

proportional and non-proportional damping. It may be 

noted that these relations do not allow one to compute the 

parameter matrices by means of identified eigenquantities 

only, because the identified modal quantities are erro-

neous and incomplete. 
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The equations of motion with their physical parameter 

matrices can be taken for identification. In addition, the 

physical parameter matrices may be expressed by modal 

quantities, and these relations can also serve for identi-

fication. In addition, the solutions of the equations of 

motion can serve as mathematical modele. 

In the time domain the dynamic response of the 

viscous damped system, predicted by a model with symmetric 

matrices is 

t. 

u(t)- U eAB1 <t.-"t) U p(t) dt + " J "T - Bi Bi 

0 

t 

+ u82 J eAs2<t.-'t) U~p(t)dt + 
(1.10) 

0 

t. 

+ U eAB2 t.-"t U p(t) dt "•J *< )"*T 
B2 B2 

0 

with eAt.:: dlag (e>-tt.). xre < 0 and index 1 denoting real 

eigensolutions and index 2 denoting complex eigensolu-

tions. 
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The last two summands of Eq. (1.10) can be assembled: 

t. 

u(t) = UBI I •""' ,._" u~ ph) dt + 

(1.11) 

[ull Aszlt.-'t) ull T ] ( ) d 
82 e 82 p t t . 

The free vibrations after the excitation (say t > T) 

can be described by 

T 

u(t) = Ua eAst. I e-As't u~ p(t) dt 

-oo 
(1.12) 

Ull Ast. 
-· 8 e c 

It is a Superposition of decaying exponential vector 

functions for a system with persistent damping. 

For active systems (with nonsymmetric matrices) the 

dynamic responsein the s domain is given by 

II II 

U(a) = U8 (I a- A8 )-1 V~ P(a) 

= ~ Oj, P (a) 

1•1 8 - ).BI 

(1.13) 
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The dynamic response for weakly damped systems can be 

written as 

U(s) (1.14) 

wi.th ( ••• )* equal to the conjugate complex term ( ••• ) and 

with in general 

(1.15a) 

for harmonic excitation with the amplitude vector p 0 it is 

(1.15b) 

and for free Vibrations it is 

To I e->..st t p(t) dt] (1.16) 

0 

for impulse excitation p(t) ~ 0 within 0 < t < T 0 and the 

response holde true for t ~ T0 • 

The state space formulation of the model equation is 

also very common: 
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:X= Ax + f (1.17) 

with the observation equation 

y = Cx. (1.18) 

In centrast to the state space formulation used in 

control engineering, here we have additional knowledge 

about the structure of the state vector and the state 

space matrix: 

x(t):=(uu.((tt)))' A·-( ~' \), f(t):=( -10()) 
-M- K, -M- 8 M P t ( 1 • 1 9 ) 

The advantages of the state space formulation are its 

reduction to the first derivative order and, in consequen-

ce, the simple matrix eigenvalue problern equation includ-

ing its simple energetic orthogonality relations, and the 

fact that in addition to the state vector, only its first 

derivative is needed. The disadvantage is the order-

doubling of the matrices. 

The dynamic response both in the time and in the 

frequency domain of the systems considered can be expanded 

by eigenvectors of the corresponding systems. The partici-

pation factors of the eigenvectors depend on the werk done 

by the excitation or on the initial conditions due to the 
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eigenvectors, on the eigenfrequencies compared with the 

given frequency and on the modal damping ratios. As can be 

seen, by using orthogonality relations one can eliminate 

all the degrees-of-freedom except for the one to be in-

vestigated. This can be performed by multiplying the dyna-

mic response in a suitable manner or by an appropriate 

excitation. Another way of eliminating one (generalized) 

d~gree-of-freedom may be by analytical separation using 

different responses due to different known excitations. 

It is important to know the above relationships and 

properties of the model quantities for identification ap-

proaches, because the more one knows a priori, in trivial 

consequence the lese has to be identified. 

Resonance testing, which was very common in the past, 

serves for identifying the modal quantities of a single 

degree of freedom. It can be theoretically treated in a 

general way by_ the phase lag theory /1.9/· Instead of 

using it, let us explain the phase resonance by the usual 

procedure applied in practi ce. The inpu t/ou tpu t re la tion 

of the system harmonically excited by p(t) • p 0 ej0t is 

described by Eq. (1.1) 

(-01 M + jQB + 10 (Qr• + jQlm) = Po · (1.20a) 
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Separating it into the real and imaginary parts yields 

(- 0 2 M + 10 Qre - 0 B Qlm = Po 

0 B Qre + (- 0 1 M + K) Qlm = 0 . (1 .20b) 

With the necessary and sufficient conditions 

II 
ur•(w01>=0, (1.21a) 

called phase resonance, the second equation of (1.20b) 

results in the matrix eigenvalue problem (1.4) with the 

eigenvector uim(w0 i) • u 0 i: the system vibrates in the i

th eigenmode due to an excitation given by the first 

equation of (1.20b): 

(1.21b) 

This equation means that a force proportional to the 

unknown viscous damping force in the i-th mode is neces-

sary in order to excite the i-th, and only the i-th, natu-

ral mode of the system under test. This appropriate exci-

tation compensates the damping force. Because the eigen-

vectors are linearly independent, n linear independent 

excitation vectors are necessary in order to excite all 

the modes. Transformation in generalized coordinates shows 

19 
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that when the system vibrates in the i-th natural mode it 

can be described in the i-th generalized coordinate like a 

one degree-of-freedom system. The above statement is true 

for non-proportional damping only for Q = W0 i. For propor

tional damping, in which the dynamic response can be ex

panded into the eigenvectors uoi• the same statement holde 

true for 0 ~Q< oo. This enables the user to apply the 

-"ell-known formulae of one degree-of-freedom systems to 

evaluate the modal damping (generalized damping) and the 

normalization factor of the i-th eigenvector (generalized 

mass). The determination of the complex generalized damp

ing matrix would require the knowledge of all linear 

independent appropriate excitation vectors (see Eq. 

(1.21b)). - The calculation of the eigenvectors of the 

damped model is possible only with the knowledge of model 

parameter matrices or with the equivalent information. 

In order to simplify the formalism (and/or the test) 

or to get a better insight into the system behaviour, it 

is very often advantageaus to partition the system into 

subsystems and then to synthesize the modele of the sub

systems to the entire model. This can be done with the 

help of modal quantities (admissible vectors in the spirit 

of Rayleigh-Ritz) of the primary, generalized coordinates 

and by neglecting the remaining, secondary coordinates. 

This modal synthesis is done with a transformation which 
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can be chosen so that approximate dynamic condensation is 

obtained /1.1 ,1.5,1.10/. Error considerations which can be 

used as corrections are discussed in /1.1, 1.11 /. 

If a system contains nonlinear elements the substruc

ture synthesis presents itself: the investigation and 

identification of linear subsystems and of the nonlinear 

elements and then the coupling of the results by analysis. 

The detection of nonlinearities is one problem, their 

parametrical description is another problem. There is a 

parametrical description for nonlinear elements using, for 

example, polynomial series for a given number of terms 

(power of polynomial), and thus the structure of the ma

thematical model is defined. Other models are described in 

/1.12/ and summarized in /1.13/, but these models are not 

able to reproduce hysteretic system behaviour. For hys

teretic behaviour the reader's attention is drawn to 

/1.14/. 

Finally, linear differential error analysis should be 

mentioned. It serves to detect model sensitivities, in

cluding those concerning the parameters. This information 

can give an indication of modelling errors and of the 

choice of s.ilb'.aystems tobe corrected. The gain factors or 

functions coming from linearized Taylor expansions show 

21 
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the influence of the parameters considered, and, for 

example, dynamic variables etc. Sensitivity considerations 

can also be made with respect to initial conditions etc. 

Modifications based on linearized investigations /1.5/ can 

use Taylor expansions, too. If the modifications concern 

some modal degrees-of-freedom they can be taken into 

account using the spectral decompositions of the frequency 

response matrix or of the parameter matrices. 

The basis for input identification in the time domain 

is the deconvolution of system output signals. The mathe

matical procedure, however, can cause numerically large 

difficulties. In the frequency domain the input can be 

calculated easily if one knows the frequency response 

function matrix of the system with sufficient accuracy and 

also the corresponding output. If the system is partly 

known one can try to determine the remaining model para

meters (e.g. damping ratios) and the input quantities 

/1.15/. 
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1.3 Comments on Acoustic Quantities 

Acoustic emissions can be generated directly by an 

acoustic source or indirectly by structure-borne vibra-

tions and radiation. The inverse is also true: acoustic 

loading can cause structural response. This fact can be 

used as a non-contact excitation of modes (acoustic modal 

analysis). The problem which arises is that only particu-

lar eigenvectors are excited measurably. 

The determination of sound pressures, intensities, 

source locations, the elimination of noise etc. is based 

on well-known physical relationships, source characteri-. 

stics and on signal properties /1.5/. The total sound 

power passing through a defined surface with area S is 

defined by /1.16/ 

w· Jr dt. 
s 

( 1 • 22) 

where T is the sound intensity vector and ! the normal 

vector at the surface. In an isotropic nonviscous homoge-

neous medium with zero mean flow and without field force 

effects, the time-averaged product of the instantaneous 

pressure and the corresponding particle velocity f at the 

same position equals the intensity 

23 
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T 

r = ~ f p<t. t) t<t. t) dt (1.23) 

0 

with position vector 1 and t the time variable. T is the 

period of waves. 

~ cannot be measured directly, therefore Euler's relation-

ship 

_...d p(i":t) = -n d\P'(f,t) (1.24) 
··- • "'0 dt 

with p0 the air density is used in order to obtain the 

velocity 

t 

f<t. t) = - ~of arad p<t. t) dt 

0 

(1.25) 

The integrand in (1.25) can be taken approximately as 

the first order difference (measured with closely spaced, 

distance 6r, microphones with identical (!) characte-

ristics). The accuracy of this approximation is also de-

termined by the choice of 6r compared with wavelength A· 

In addition to this direct method in the time domain, the 

use of correlation functions and their Fourier transforme 

(spectral density functions) leads to Eq. 1.16 (ergodicity 

assumed) 
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-
I( r) = Rpv ( r, t-= 0) -= J Spv ( r, f) d f ( 1 • 26) 

--
(vhich can be handled by a tvo-channel FFT analyzer). The 

approximations knovn from time series analysis may be 

applied for solving Eq. (1.26). 

Intensity measurement serves also for source detection, 

and its determination can now be carried out close to the 

radiating surfaces. 

In order to overcome the general acoustic radiation 

problem one has to formulate the boundary value problem; 

e.g. as the Helmholtz integral equation /1.17/ (pressure 

field equal to the surface integral of surface pressure 

superimposed by the velocity over the radiating boundary). 

If the surface velocity is knovn, this equation is a Fred-

holm integral equation of the second kind for the unknovn 

surface pressure. Apart from special cases with known so-

lutions there are a lot of publications on approximations 

(e.g. /1.18/), vhich can be used as a basis for identifi-

cation. The numerical formulation of the Helmholtz inte-

gral equation is used in /1.19/, taking the derivative of 

the free space Green's function. Similarly to the 

approaches in experimental modal analysis and finite ele-
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ment methods, an approximation is made by partitioning the 

source surface into a finite number of plan~r surface 

elements (chosen, for example, so that the velocity and 

pressure is distributed uniformly over the elements). The 

result is a system of linear inhomogeneous equations. 

1 .4 Test model 

The definition of the test model is contained in Fig. 

1.5. The test planning in general takes into considera

tion the a priori knowledge of system analysis and experi

ence with comparable structures. It should contain an 

optimization of test signals and locations of pickups with 

respect to the test object and the (predicted) dynamic 

behaviour. The test is carried out with the real structure 

{or a dummy) which is adequately supported. The structure 

is generally equipped with attached exciters and pickups. 

First the mechanical effects (inertia, stiffness, damping) 

of this equipment have to be assessed (see the 2nd part of 

this Introduction). The electrical effect should be ascer

tained (e.g. calibration, direct controlling; feedback 

depending on vibration characteristics has to be avoided). 

All in all, deterministic errors including environmental 

influences have to be detected so that they can be pre-
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vented or corrected analytically. Fig. 1.4 indicates poss

i ble disturbances. 

The measurement has to be planned carefully, and, of 

course, the excitation. A check of the Observation is 

recommended (e.g. by a quick look and coherence measure

ment), and also a check of the assumptions made consider

ing the physical model. The latter, for example, means 

examining the hypothesis of linearity (homogeneity and 

Superposition) and of time invariance. Independent of the 

kind of identification used, statistical methods must be 

applied to the measured continuous signals in every case 

in order to reduce random errors: time series analysis. 

Tasks arising in time series analysis are 

- discretization (sampling and quantization) 

- demand on frequency resolution 

- windowing 

- aliasing 

- estimating of correlation and spectral density func-

tions. 

The digital processing of continuous signals demands 

a digi tization which includes sampling and quantization. 

The quantization can be done without difficulty (overload 

does not have to be a problem), the sampling can be guided 

27 
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by Shannon's theorem. The finite length T of each measure

ment record (rectangular time window [o,T) ), sets limits 

to the frequency resolution ~f • 1/T. The finite obser

vation time and the chosen window cause leakage in the 

Fourier transformed data. Analog filtering is necessary 

before digitization in order to avoid aliasing errors. The 

application of the finite DFT (often ueed) in the form of 

fast working computer routines (FFT) or hardware treats 

the signal as if it were periodical, i.e. the coefficients 

of a Fourier series expansion of the signal are calcu

lated. The routines are cyclic procedures (transforma

tions) with which inverse DFT and convolution integrale 

can be calculated. It can be shown that the DFT of the 

discrete correlation function equals the discrete periodo

gram. The periodogram is defined by 

( 1 • 27) 

w her e X; ( j W) i s t h e c o n j u g a t e c o m p 1 e x f in i t e Fourier 

transform of x(t) and YT(jW) respectively, and T is the 

measuring time (record length). This periodogram is a 

rough approximation of the spectral density function be

cause in addition it is necessary to calculate the expec

ted value of Eq. (1.27) according to the definition of 

spectral densities. 
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Another property within the Fourier and Laplace 

transformation should be mentioned. The measured signal 

transformed into the frequency domain gives the signal and 

the noise in the frequency domain. The covariance matri:z: 

of correlated noise signals transformed by DFT yields a 

diagonal matri:z: /1.20/. This is a great advantage when 

dealing with covariances of estimates in the frequency 

domain. The same statement does not hold true for the 

discrete Laplace transform, even if the noise signals are 

uncorrelated. The advantage of the Laplace transform is 

the improvement of the signal to noise ratio of transient 

signals due to the exponential window. 

1 .5 Parameter and State Estimation 

In the· classical non-Bayesian approach of parameter 

estimation the parameters to be estimated are considered 

as fi:z:ed but unknown constants (a). The "true" parameter 

values may be denoted by &. The prior knowledge here con

sists of an initial guess e of the "true" parameter 

values. The posterior knowledge is given by parameter 

estimates ~ which are realizations of the applied esti

mators that are statistical variables (Fig. 1.6). These 

variables satisfy the sampling distribution p(f, N), which 

depends on the estimator and the sample size N and is in 

29 
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general unknown. Its most significant characteristics are 

the expected values E {~}. the bias E {~} - l and the 

covariance matrix cov(~) • E {(~- E{~ (~- E\~)T}. The 

estimators considered here are the least squares (LS), 

weighted LS (WLS) and the method of instrumental variables 

/1.5,1.12/. The disadvantage of the LS methods are that 

they can lead to biased estimates due to measurement 

noise. Using the instrumental variables method is one 

possible way of removing this disadvantage. 

plß.NJ 

e 

FIG.1.6 NON - BAYESIAN APPROACH 
TO PARAMETER IDENTIFICATION 
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In the Bayesian approach to parameter estimation 

/1.21, 1.22, 1.23, 1.24/ the parameters are assumed to be 

random variables. The prior knowledge consists of the cor-

responding prior probability density function (pdf) p(a) 

which can be "informative" (cf. (1) in Fig. 1.7) or "non-

informative" (cf. (2) in Fig. 1.7) and reflects the stati-

stician's prior confidence in the prior model. The poste-

rior knowledge consists of the conditional posterior pdf 

of a due to the input/output measurements (uM;pM) obtained 

from the system to be identified. It contains the total 

information a posteriori available about the parameters. 

In practice this information is often reduced to the Baye-

sian estimators denoted as mean 

p 

a 

FIG.1. 7 BAYESIAN APPROACH TO 
PARAMETER IDENTIFICATION 
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{1.28a) 

and mode 

{1.28b) 

If one assumes normal distributions for both the mea-

surement noise and a priori for the parameters, the pdf is 

normal too, and the most probable value {mode) can be 

obtai~ed by minimizing the quadratic loss function of the 

extended WLS formulation: 

J(a) • v+ (a) Gyv(a) + (a - e)TG• (a- e) . {1.29) 

The first term in {1.29) with the residuum vector 

v{a) {and its conjugate complex and transposed v+) des-

cribes the usual WLS. The second term contains the a prio-

ri knowledge. If the weighting matrix Ge predominates over 

the weighting matrix Gv {in ·the sense of its norm), then 

the estimates ~ are close to e and vice versa. In the 

first case the engineer's confidence in the prior values 

is large, in the second case he relies on the measure

ments. To obtain es\i~ates of minimum variance the Hermi-

tian and positive definite weighting matrices have to be 
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chosen as inverse covariance matrices with respect to the 

measurement noise and the prior estimates e respectively. 

The advantage of this formulation is that it includes the 

prior knowledge, that missing test data can be replaced by 

prior knowledge, and that it can be used as a parameter 

perturbation method for solving the problem iteratively. 

In the case where the method is nonlinear in the para

meters to be estimated, the perturbation is done by 

choosing the weighting matrices parametrically and by 

using the previous solution as starting values for the 

next iteration. 

The maximum likelihood estimation and its classifica

tion remains to be discussed. Applying the maximum likeli

hood estimation is just the same as using the Bayesian 

estimator without any a priori pdf for the parameters when 

estimating the mode (Eq. (1.28b)). The remaining (condi

tional) joint pdf is called the likelihood function (L). 

For the sake of convenience, ln L is considered (ln L is 

monotonic, therefore the maximum of Land ln L occurs at 

the same val ue): 

( 1 • 30) 

33 



www.manaraa.com

34 H.G. Natke - N. Cottin 

It is obvious that the joint pdf of the samples re-

quires knowledge of the covariance matrix of the measure-

ment noise. If there is no a priori knowledge of the noise 

covariance matrix it can be estimated together with the 

parameters /1.20, 1.21, 1.2'3/. The classification of the 

estimation methods mentioned is shown in Fig. 1.8. 

A state estimation may sometimes be necessary in 

addition to parameter estimation. The starting point is 

the linear(ized) process (1.17), (1.18) contaminated with 

the measurement and process noise: 

x(t) • Ax(t) + f(t) + r(t) , 

y(t) • Cx(t) + a(t) . 
(1.'31) 

The observation of y(t) is done during the time in

terval [O,T) and we vant to determine an estimate of x(t) 

denoted by ~(tiT). (The combined estimation of parameters 

and state variables is described in /1.25/). We have to 

distinguish three cases: 

t > T prediction, extrapolation 

t • T fil tering 

t < T smoothing, interpolation, estimation. 
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o.v NORMALLY BAYES ESTIMATOR 

DISTRIBUTED a ISA STATISTICAL 
VARIABLE 

lo·FIXED BUT UNKNOWN 
OUANTITIES 

EXTENDED MAXIMUM 
WEIGHTED LEAST S.E. LIKELIHOOD E. 
PRIOR VALUES e ARE IN· GIVEN THE JOINT POF 
CLUDED.CHOICE OF WEIGHT OFo AND 

ING MATRICES Gv.Ge MEASUREMENTS 

1 v • NORMALL V DISTRIBUTED 

WEIGHTED LEAST 

Ge= 0 SOUARES E. v ARBITRARILY 
OUADRA TIC LOSS 
FUNCTION TO BE OISTRIBUTED 

MINIMIZED 

l Gy= I 

LEAST - SOUARES E. 
SPECIAL CASE OF WLSI 

liNTRODUCTION OF W 

INSTRUMENT AL 
VARIABLES E. 

ORTHOGONALITY 
METHOD WITH 
RESPECTTOW 

FIG.1.8 CLASSIFICATION OF USUAL ESTIMATORS 
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The Kalman (or Kalman-Bucy) fil ter /1.12/ starte, for 

example, wi th the Bayesian estimation. Assuming a condi-

tional pdf p(xly) and using Bayes' rule 

p(xly) = Jtlx1rl ---p(y) 
phlx) o(x) = p(y) (1 ·32) 

after the Observation of y, a new posteriori pdf for x can 

be determi~d. This leads to an iterative procedure in 

which the result of the previous calculation is the a 

priori knowledge for the next calculation when using the 

new Observations. Taking into consideration normally di-

stributed noise with zero mean, for the sampled case one 

obtains 

x(k +1) = A x(k) + f(k) + r(k) 
(1.33) 

y(k) = Cx(k) + n(k) : 

i<k+ l) = A t(k) + f(k) + r(k + l) [y(k+ l)- C {A~(k) + f(k)}l , 

r<k+U = QHt+U cT [C Q(k+U cT + caal-1 = PCk+U cT c;._1a. 

QHt+U = A·P(k) AT+ Crr, 

P(k+U = [Q-1(k+U + cT c;~ cr1 = 
(1 ·34) 

= Q ( k + 1) - Q (k + U cT [ C Q ()t + 1) cT + C..a l-1 C Q ( k + U , 
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t:. where x(o) and P0 (• Ge if parameters are to be estimated) 

are given. Summarized, the following symbols are used: 

iUt)=AiUt-U+f(k-1) filtered, estimated state 

C [A l(k-1) + f(k-1) l Observation of filtered state 

y(k) - C [A i(k -1) + f(k -1) l error between observed and 

filtered value 

QUt + 1) covariance matrix of x(k+1) 

based on k+1 Observations 

P(k) a posteriori covariance matrix 

of x(k) based on k Observations 

covariance matrices of n and 

r respectively 

If the process behaviour is nonlinear one can use the 

filter equations given above through linearizing around a 

known approximate solution of the state equations. If the 

linearization is done with the best estimate ~ of the 

state vector the approach is knovn as the extended Kalman 

filter /1.25/. 
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2. On optiona and limitationa for dynamic teste 

Aa already mentioned, ayatem identification needa 

both the mathematical model a priori obtained by ayatem 

analyaia and the experimental model from dynamic teating 

of the real atructure. These teste are deaigned to valid

ate the mathematical model by checking the baaic aaaump

tiona made, auch aa linearity, atiffneaa diatribution, 

maaa diatribution, damping diatribution, and boundary con

ditiona, and to reduce the prior uncertaintiea of model 

parametera. On the other hand, it often occurs that condi

tiona correctly aaaumed in the model cannot be realized by 

the teat procedure (e.g. boundary conditiona during dyna

mic teste of apacecraft), so that the diacrepancy between 

model and teat reaulta thua reaulting haa to be removed 

mathematically. System analyaia and teat procedure there

fore have to be complementary. 

Since dynamic teste for ayatem identification are 

applied in oivil engineering aa well aa in mechanical en

gineering or the aircraft induatry, a variety of teat 

methoda have already been developed to atandard procedurea 

adapted to the different teat itema and teat facilitiea 

/2.1/1.7/. 
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2.1 Environmental and boundary conditions 

It is obvious that civil engineering structures 

cannot be tested separately from their natural environ

ment. Two important types of dynamic interaction should be 

mentioned: ground-structure interaction and fluid-struc

ture interaction (e.g. offshore structures, tall build

ings, cooling towers, chimneys) /2.2/2.3/2.4/. These 

interactions may severely affect the results of dynamic 

teste and require increased effort in data processing to 

reduce the interference /2.5/ and/or have to be taken into 

account when designing the mathematical model /2.3/. How

ever, such natural loads can also be regarded as random 

excitation, and measured Vibrations ("ambient response 

data"), for instance due to wind, in some cases allow one 

to estimate fundamental frequencies and damping ratios of 

buildings /2.1/2.3/· 

On the other band, it can be difficult to simulate 

the correct boundary conditions during the dynamic identi

fication test, for instance in the aircraft and spacecraft 

industry when ground-based teste {"ground vibration test

ing") have to simulate flight environments. A frequent 

method of conducting such vibration teste on aircraft 

under "free" boundary conditions is to suspend them in a 

low-frequency support system comprised of long cables and/ 

or soft mechanical or air springe. The general requirement 
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on the support systemisthat it has no natural frequen

cies within a factor of four or five (or more for highly 

damped structures) of the test structure modes of 

intereat. This orten results in a pendulum suspension of 

the structure by attaching the cables to structural points 

of lese deflection i.e. of relatively high stiffneaa. When 

complete aircraft are tested dynamically on the ground the 

boundary conditions are orten not simulated by a soft 

suspension but by supportins the test structure directly 

with air (pneumatic) springe /1.5/· For Figa. with various 

suspensions see /2.21 I· 

Soft and pendulum suspensions are also used for test

ing spacecraft structures dynamically on the ground, i.e. 

in the earth-gravity environment. However, this ground 

test technique becomes questionable when lightweight con

structions of large size have to be tested at frequencies 

below about 1 Hz /2.6/. Suspension frequencies about a 

factor of five belov the first natural frequency of the 

structure ~an require impractically long cables or imprac

tically soft springe. On the other band, long cables and 

soft springe have their ovn natural frequencies which give 

rise to an upper frequency limit of the test setup which 

is belov moat of the modea of the apace atructure under 

teat. Tvo alternatives are available: mathematically re

moving the effecta of the teat aetup and/or the use of 
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special test setups and narrow-band testing for each mode 

desired /2.6/. 

In spite of these difficulties the low frequency sus

pension of such test structures seems to be more advan

tageaus for simulating boundary conditions than "rigid" 

fixtures, which are sometimes used when etructures or 

etructural componente (eubetructures) are teeted on a 

shaker table. Really rigid fixturee can never be obtained 

in practice, but cauee interactione between test eetup and 

test structure, which then have to be taken into account 

in the mathematical model. 

2.2 Excitation of teet etructures 

If natural (ambient) loads or Operating loade (e.g. 

unbalance forces of rotating machines ( turborotore etc.)) 

are not available or ineufficient for dynamic teste of the 

structure under inveetigation, the test structure hae to 

be excited by a euitably chosen test device. Which kind of 

excitation (excitere) ie optimum depende on the teet ob

ject ae well ae on the time available for carrying out the 

teet. For dynamic teste of civil engineering etructuree it 

is often easiest to apply etep relaxation ("enapback teet

ing"), i.e. the structure ie preloaded with a measured 

41 
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force through a cable which is then suddenly released 

/2.5/· With this excitation technique in general only the 

lowest natural modes of the structure are excited suffi

ciently /1.5/· In order to excite higher natural modes 

eccentric mass exciters are used. They are driven by an 

electric or hydraulic motor and mounted directly on the 

structure generating almost sinusoidal forces 

/2.4/2.7/2.8/. Excitation frequencies up to 20 Hz and 

forces up to 200 kN are reported /2.7/ and also an accu

racy of excitation frequencies of about 0.003 Hz /2.8/. 

In /2.8/ hydraulic exciters are proposed for exciting 

highway bridges in their natural modes. The hydraulic Vi

brator is a device which transforme the power of a high

pressure flow of fluid from a pump to the reciprocating 

motion of a piston in a hydraulic actuator. An electromag

netic (electrodynamic) driver unit and a power valve or 

hydraulic amplifier are used. Depending on the power capa

city of the system, large forces and large velocities of 

motion can be generated, made possible with a large 

stroke. For harmonic excitation without distortion the 

operating frequency range has an upper limit of about 50 

Hz /2.9/, while the low-frequency limit is usually zero 

(for further details see also /1.7/2.1 0/). Since the 

weight of a hydraulic vibrator is small relative to the 

forces attainable, a heavy reaction mass or support is 

necessary if such a vibratory force is to be introduced in 
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a large structure. This may be a complicating factor when 

large, fixed structures have to be exci ted. 

If large forces and/or large vibration amplitudes are 

not necessary but higher excitation frequencies are re

quired (e.g. when testing spacecraft structures), electro

magnetic (electrodynamic) exciters (shakers) are used 

which are essentially constructed like the electrodynamic 

driver mentioned above. The driving force is generated by 

the interaction between an alternating current flow in an 

armature coil and an intensive magnetic dc field passing 

through the coil which is concentrically located (with 

radial clearances) in the annular air gap of the dc elec

tromagnet. The armature coil is connected to the electro

magnetic unit by leaf springe, which are relatively soft 

in the direction of force but stiff in the transverse 

direction, also limiting the peak-to-peak displacement. 

The generated force is limited by the available power 

amplifier current and the capacity of the cooling device 

for carrying off the dissipated heat caused by copper and 

iron losses in the electromagnetic unit. The power ampli

fier can also be the cause of the operating frequency 

range having a lower limit above zero cps, because not all 

power amplifiers are able to deliver extremely low freque

ncies (er. Fig. 2.1 ). 
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The sinewave of the force output by electromagnetic 

vibrators has lese distortion than that of other exciter 

types. This is an advantage for Vibration teste when sinu-

soidal forces are required. This is also one of the 

reasons why electrodynamic shakers are so often applied in 

vibration teste and are available in various sizes. Be-

cause the generated force is usually lese than the weight 

of the shaker, elaborate installations are not needed if 

the shakers can be suspended near and coupled to the 

structure being investigated. 
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Very often the applied forces have to be controlled 

in dynamic teste of structures. Therefore it is necessary 

to measure the imposed forces directly at the structural 

point of application, so that the interactions between 

structure - exciter attachment - electrodynamic/electro

hydraulic exciter system can be compensated by a suitable 

control system. 

By using such electric control devices it is possible 

to apply not only forces with sinusoidal waveform but also 

various other kinds of deterministic and/or random excita

tions. Sine-wave generators and random noise generators 

have been well-known for a long time as voltage suppliere 

in control systems of vibration machines for qualification 

tests of struc~ures /1.7/• However, with the implementa

tion of digital signal processing, test signals are not 

limited to eine waves or pure random. With the diserste 

Fourier transform, any physically realizable signal can be 

used for excitation. So it is feasible to choose from a 

variety of excitation types and select the one that is 

optimum for the test in question. 

45 
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Apart from the step relaxation (already mentioned 

above) and impact (impulse) techniques (see below), the 

most common· deterministic excitation signals are derived 

from sinusoidal signals: 

Stepped-eine excitation (also known as "sinusoidal 

dwell") is often applied in vibration teste (e.g. ground 

vibration teste of aircraft) based on sinusoidal signals 

of constant frequency. By "stepping" the sine frequency 

through the frequency range of interest, frequency respon

se functions can be evaluated for a number of discrete 

frequency points. Or the structure under test can be ex

cited in one of its normal modes, provided that several 

exciters are used simultaneously in an appropriate exciter 

configuration and "dwell" on the corresponding natural 

frequency of the structure (phase resonance technique 

/2.9/). As all excitation energy ie located in one eingle 

frequency, a high eignal-to-noise ratio ie attained. The 

favourable peak-to-rms ratio allows one to study excita

tion level dependenciee of system parametere. Thie ie 

essential for the detection and the analyeie of non-linear 

eyetem behaviour. Another advantage of stepped-eine exci

tation ie the variable frequency resolution, which can 

eaeily be adapted to the measured eyetem reeponee. The 

main disadvantage of this excitation method ie that after 

a step in the frequency range, the experimentalist hae ·to 

wait for the traneient system reeponee to die out before 
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he can measure the steady-state response. So vibration 

tests with stepped-sine e%citation are e%tremely time

consuming. (For application in modal analysis cf. 

/1.5/2.11/}. 

In order to diminish this disadvantage swept-sine 

e%citation /1.5/1.7/2.12/ is often used. When slow sine 

sweeps are applied, the sweep rate is kept so slow that 

the e%cited system can resch a quasi-steady stete. If this 

condition is violated and the frequency response function 

is evaluated as usual for stepped sine e%citation it is 

distored, and the resonance frequencies seem to be shifted 

in the sweep direction. (For a suitable sweep rate cf. 

/1.7 /}. The advantages and disadvantages of slow sine e%

citation are therefore almost the same as for stepped sine 

e%citation, e%cept for the shorter duration of the vibra

tion test. 

By applying a fast sine sweep (chirp, Fig. 2.2), the 

sweep rate e%ceeds the quasi-steady stete condition. In 

order to avoid leakage errors when analyzing the system 

response with a usual digital Fourier-analyzer, the fast 

sine sweep is made periodic in the analyzer window (perio

dic chirp}. The number of periods required to achieve 

periodicity in the response is determined by the impulse 

response time of the structure under test /2.13/. In 

addition to its speed the advantages of a periodic fast 

sine sweep are: good peak-to-rms ratio, usefulness in 

47 
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characterizing structural non-linearities, good signal-to

noise ratio, controlled bandwidth. It is disadvantageous 

that periodic chirp generates periodic noise due to struc

tural non-linearities, and that it is difficult to set 

transducer gains. 

Pure (true) random excitation with ergodie signals 

(normally with Gaussian distribution) is well-known for 

its ability to obtain the bestlinear approximation of a 

non-linear system for a given level of random signal input 

by averaging successive records of frequency domain data, 

which results in a good linear estimate of the frequency 

response func tion /2.12/2.13/. This is important if para

meter estimation techniques are to be utilized to extract 

the modal properties. The main disadvantage with pure ran

dom excitation is that neither input (force) nor response 

are periodic within the measurement time, giving rise to 

leakage error when an FFT-analyzer is used. This requires 

the use of weighting or window functions (e.g. Hanning 

window) to reduce the leakage errors. However, the com

puted frequency response function is distorted by windows 

of this kind, and the frequency resolution is reduced 

/2.13/2.14/· 
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FIG.2.2 FAST SINE SWEEP EXCITATIONS: 
a) LINEAR 
b) EXPONENTIAL 
c) LOGARITHMIC 

Periodic random excitation can be applied to avoid 

leakage errors, vhere a random number generator is used to 

create an array of values in the time domain, vhich vhen 

Fourier transformed yield a spectrum vith random amplitude 

and phase /2.12/2.13/. Periodic random excitation has the 
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same advantage concerning non-linear systems as pure ran

dom excitation, but the process of establishing periodici

ty (i.e. the test structure is excited with this input in 

a repetitive cycle until the transient responsedies out 

and the stationary response becomes periodic with the in

put) is time-consuming, in particular when lightly damped 

structures are tested /2.12/2.1.,/. A further disadvantage 

is that more sophisticated hardware is required in order 

to generate periodic signals synchronously with the 

measurement process /2.15/. 

Pseudo-random signals are created in the frequency 

domain, usually with uniform amplitude and random phase 

throughout the desired frequency range. Fourier trans

formed into the time domain, the signal is transmitted to 

the exciter system through a digital-to-analog converter. 

This process of signal generation leads to an advantage of 

pseudo-random excitation: the excitation signal is always 

periodic within the sample window and therefore does not 

suffer from ·leakage errors. One principal disadvantage of 

pseudo-random excitation, however, is that non-linearities 

of the test structure will generate periodic noise which 

cannot be averaged out /1.5/2.12/2.1.,/. To avoid this dis

advantage, periodic pseudo-random excitation can be used 

/1.5/: during the first input of pseudo-random excitation 

one has to wait for the transient system response to die 

out so that the steady-state response (and the correspond-
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ing input) can be measured. After that another pseudo

random excitation is generated which is uncorrelated with 

the previous one, and the steady-state response of the 

system is measured again. This procedure is repeated 

several times, and averaging the resulting frequency re

sponse functions reduces not only random measurement noise 

but also distortions due to system non-linearities. Peri

odic pseudo-random excitation needs more measuring time 

than a pseudo-random one, but structural teste with peri

odic pseudo-random excitation can still be carried out 

about ten times faster than the same teste ~ith harmonic 

excitation. (For the generation and application of pseudo

random binary test signals cf. /1.12/2.17 /). 

Burst random signals contain the properties of random 

and transient signals ("random transient"). The random 

input history function is truncated at a point so that the 

response history decays to zero within the sample period. 

So this excitation signal has all the advantages of perio

dic random without the disadvantage of increased test time 

to establiah periodicity. Even for lightly damped atruc

tures the response history will decay to zero very quick

ly, due to the excitation system producing a damping force 

aiding the dissipation of the stored energy of the struc

ture under test. This additional damping force is measured 

·by the force transducer located between the structure and 

51 
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the shaker armature, and can thus be taken into account 

/2.13/2.15/· 

Besides step relaxation (already mentioned), impact 

or hammer excitation is a second (very popular) type of 

transient excitation. Its main advantages are obvious: 

fastest test method for linear systems in low noise en

vironment, minimum equipment requirements, excellent field 

test method and useful on operating systems. Its disadvan

tages are: very high peak-to-rms ratio and therefore not 

suitable for non-linear systems, limited control of fre

quency content, poor signal-to-noise ratio. (For the im

pact testing technique including local damping effects cf. 

/1.5/). 

It is very common to use the test signals summarized 

above (cf. also Table 2.1) for single point excitation. 

But during the single input excitation of a system large 

differences may exist in the vibration amplitudes at 

various locations because the excitation power dissipates 

within the structure, particularly in the case of heavy 

damping. Multiple point exc i ta tion is expec ted to resul t 

in a better energy distribution, especially in large and/ 

or complicated structures /1.5/· The principal advantage 

of multiple point excitation is the increase in accuracy 

and consistency of structural parameter estimates /1.5/· 

In order to estimate the (matrix of) frequency response 

functions it is required that the inputs are not perfectly 
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correlated at any frequency. (Theoretically, completely 

uncorrela~ed inputs would be best, but some degree of 

correlation cannot be avoided in practice due to the impe-

dance mismatch between the excitation system and the 

structure). 

PERIOOIC J. TRANSIENT 
IN ANALYZER WINDOW 

SINE TRUE PSEUOO RANOOM FAST M· BURST BURST 
STEADY RANDOM RAN>OM jSINE PACl SINE RANDOM 
STATE 

MINIMIZE NO · NO YES YES YES YES YES YES LEAKAGE 

SIGNAL TO VERY 
FAIR FAIR FAIR HIGH LOW HIGH FAIR NOISERATIO HIGH 

RMSTO HIGH FAIR FAIR FAIR HIGH , ... CJN HIGH FAIR PEAK RATIO 

TEST 
VERY VERY ~ VERY VERY MEASUREMENT GOOO FAIR FAIR 

TIME LONG GOOD GOOO 0000 

CONTROLLED 
FREOUENCY YES YES YES YES YES NO YES YES 
CONTENT .. .. .. •• .. .. 
CONTROLLEO 
AMPLITUDE YES NO YES NO YES NO YES NO 
CONTENT .. .. .. 
REMOVES NO YES NO YES NO NO NO YES DISTORTION 

CHARACTERIZE YES NO NO NO YES NO YES NO NONLINEARITY 

•• REOUIRES ADDITIONAL EOUIPMENT OR SPECIAL HARDWARE 

TABLE 2.1 EXCITATION FUNCTIONS 
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For further excitations (e.g. by blast and car

tridges) cf. /2.21/ and /2.22/. Table 2.1 summarizes some 

exci ta tion func tions. 

2.3 Some final remarks on measurement techniques 

Some a priori knowledge of the expected system Vibra

tion is required for the suitable selection of trans

ducers, i.e. if displacement, velocity, acceleration, or 

strain-measuring transducers should be used (e.g. displa

cement transducers for low-frequency vibration, where 

corresponding velocity or acceleration measurements yield 

an impractically small output, or acceleration measure

ments may be useful, where suitable displacement or velo

city pickups would be too large because of clearance re

quirements). The effect of added mass and the change in 

stiffness of the test structure must also be considered. 

It may be mentioned that a mass distribution of the picups 

mounted proportional to the mass distribution of the 

system under test will not change the natural modes; only 

the eigenfrequencies will be influenced in a correctable 

manner /1.5/· 
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The main requirement for a tranducer mounting is to 

couple the transducer to the system under test so that the 

transducer accurately follows the motion of the surface to 

which it is attached. So the effective stiffness of the 

transducer mounting must be large in the frequency range 

of interest. Typical methods of coupling piezo-electric 

acceleratjon transducers to a test item are shown and 

described in /2.18/. For some general rules to be observed 

in the mechanical design of transducer mountings (e.g. 

brackets) cf. /1.7/ (and also for special mounting 

methods, when, for example, a transducer has to be mounted 

on thin structures). 

The use of electromechanical transducers requires the 

installation of wiring. Wiring installations should be de

signed to minimize electrical noise being self-generated 

or induced when electrical energy is couplad into the 

measurement circuits, e.g. by ground loops, varying magne

tic or electric fields. So, for example, separate signal 

and power current return leads to reduce ground-loop 

coupling between signal and power circuits should be used, 

as well as twisted pair or coaxial cables to reduce induc

tive pickup in signal leads. Electrical noise may also be 

generated by the motion of some part of the wiring (e.g. 

by the variation of contact resistance in connectors be

cause of the change in geometry of the wire). Such elec-
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trical noise may be reduced by fixing the cable to a 

structure at frequent intervals /1.7 I· 

Concerning calibration techniques for transducers and 

the field calibration of measurement systems the raader is 

referred to /1.7/2.16/2.19/2.20/. 

3. Survey of Identification Methode 

The fundamental relationships and procedures are al

ready provided in the first chapter. However, the equa

tions must be suitably prepared in ordertobe applied for 

estimating the quantities desired. 

3.1 Some Time Domain Methode 

In structural engineering time domain methods have 

(so far) played a minor role, although the authors note a 

positive trend. If we restriet ourselves to stationary 

processes, there is one class of modele that has to be 
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mentioned: ARMA modele (Auto Regressive Moving Average). 

The modelling describes the approach for developing the 

ARMA equations from the equation of motion: Fig. 3.1. 

SYSTEM-MODEL: 
Mü• Bü •Ku:p 

' CONTINUOUS STATE 
SPACE MODEL: r--
x=Ax•f ,y=Cx 

J 
DISCRETE STATE DIFFERENCE SPACE MODEL: APPROXIMATION 

xk.1: Fxk•Guk,yk= Cxk 

1 
OBSERVABILITY AND J---

GONTROLLABILITY TEST 

l 
CANONICAL FORM 

1 
ARMAMOOa: 

y,:- A,Yi-1" ···- ApY,.p• 
+B1ui_1+··· + BqUi-q 

FIG. 3.1 FORWARD MODELLING 
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From the state space model (1.17) and with the obser-

vation equation (1.18) one obtains the discrete-time state 

space model /3.1 I 

with 

p ·= eAb • b ·= ~ •• -~ 

G,. J eA•a •• 
0 

f(t) =• Ba(t) . 

(3.01) 

(3.02) 

Other representations can be obtained by substituting 

the differential quotient in (1.17) for finite differ-

ences. If the number of approximation points at a finite 

interval tends towards infinity, then the matrix obtained 

converges with the matrix eAh. It holds true that the 

discrete model with the state matrix F is covariance equi-

valent, i.e. the values of covariance of the output at tk 

• kh for every k are the same for the discrete model as 

for the continuous model. The models obtained by the 
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difference scheme can therefore be called asymptotically 

covariance equivalent. 

Only fully controllable (C} and observable (0} 

systems can be completely identified. Therefore the con

trollability and observability (C/0} of the system have to 

be investigated before the identification procedures are 

applied. C/0 depend on the state matrix F (the structural 

properties} as well as on the control matrix G and the 

observation matrix c. This means that the non-controllable 

(non-observable} system can be turned into a C/0 system by 

the proper choice of the method of observation and excita

tion. This can be done, for example, by shifting the exci

tation points and measuring points, or by introducing 

additional ones. C/0 teste can be done in the standard 

form or in the modal form /3.1-3.3/· The C/0 result is 

theoretically two-valued: yes - no; but in practice, ill

conditioned matrices can be obtained as a consequence of 

weak C (excitation close to a modal line of a mode}. - A 

check of the degree of the C/0 can be made by the trans

formation of the state space representation to the uni

formly balanced model /3·4-3-7/. The uniformly balanced 

representation allows one to display, and therefore to 

omit, the weakly controllable and observable state vari

ables by order reduction. 



www.manaraa.com

60 H.G. Natke - N. Cottin 

The derivation of the ARMA representation from the 

discrete-time space model consists of tvo steps: first, 

the state equations are transformed to the observabili ty 

canonical form /3.8, 3-9/, then the ARMA model is obtained 

by rearranging. The different modele are described in 

/3.10/ from a uniform point of viev. 

The estimation of the parameters a is presented in 

Fig. 3.2. It is a model linear in the parameters to be 

estimated: 

y is the measurement vector (N,1), ~ is the data matrix 

(N,p), v is the vector of unknovn measurement noise. The 

data matrix can be given in different forms: auto-correla

tion, covariance, pre- and post-vindoved /3.11 - 3.14/. 

The estimation can be done in batch or in recursive 

form, both vith reference to time and order. 

With the instrumental variables matrix W one obtains 

the Yule-Walker equation from (3.03) 

wr.t. wr,. (3.04) 
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ARMA MODEL 

~ 
ESTIMATION MODEL 

y = Q>a + v 

l 
BATCH TIME RECURSIVE ORDER RECURSIVE 

ESTIMATION: ESTIMA TION: ESTIMATION: 
LS.IV.ML LS,IV,ML LATTICE FILTER 

~ 
l ESTIMATES 8 

l 
ORDER TEST 

FIG.3.2 ESTIMATION OF ARMA-PARAMETERS 

When W = cp we obtain the LS estimator. The time re-

cursive estimation can be done with the methods mentioned 

previously (Chapter 1.5). Order recursive estimation is 

only possible if the matrix wT~ in the Yule-Walker equa-

tion has Toeplitz form, and then the lattice filter method 

can be applied. If wTcp is non-Toeplitz but near Toeplitz, 

in the sense given in /3.15/, then the lattice filter can 

be taken together with a recursive corrector /3.15/. 
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The order of the model is often not known in identi

fication. Order determination can be performed by a 

- determinant ratio test 

- test of the linear independence of output sipnals 

- lose function test 

- signal error test 

- transfer function error test 

- F-test 

- final prediction error test 

- Akaike information criterion 

- test of pole configuration. 

The last step in ARMA identification is the backward 

modelling, as shown in Fig. 3·3· 

In structural mechanics, time domain methods deal 

mainly with modal identification instead of estimatin~ the 

physical parameter values directly with measured acceler

ation and, for instance, computed velocities and displace

ments. The usage of the free decay solution of (1.11) is 

very common in the form of the system eigensolution (1.12) 

(contaminated by noise). 
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The following problems are combined with using these equa-

tions 

- solvin~ a nonlinear system of equations 

- determination of the effective number of degrees-of-

freedom 

- interference by noise. 

ARMA MODEL 

l 
CANONICAL 

FORM OF DISCRETE 
TIME STATE SPACE 

MODEL 

l 
DISCRETE TIME 

CANONICAL STATE SPACE 
FORMOFTHE MODEL ' CONTINUOUS 

l 
BACKWARD 

TIME STATE DIFFERENCE 
SPAGE EOUATION 

CONTINUOUS TIME 
APPROXIMATION 

I STATE SPACE 
MODEL 

l 
SECOND ORDER 
DIFFERENTIAL 

EOUATION 

FIG.3.3 BACKWARD MODELLING 
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The first to deal vith this identification technique 

was Prony in·1795 /3.16/. He transformed Eq. (1.12) into 

polynomial form. Modern researchers are Ibrahim et al. 

They convert Eq. (1.12) to an eigenvalue problem usin~ an 

oversized model /3.17-3.20/. A Ph.D. thesis /3.21 I should 

be mentioned here. The polyreference method /3.22/ uses 

(multiple solutions) (1.12) for different initial con

ditions and combines these equations for various time in

crements. 

Another approach is based on the singular value de

composition instead of least squares and is called the 

eigensystem approach /3.23/. This procedure is advant

ageaus if it is possible to determine the order of the 

system from the decomposi tion, thus reducing the order or 

the parameter equations to be solved. A slightly different 

approach that is independent of /3.23/ is derived in 

/3.24/• A survey is contained in Ref. /3.25/. 

3.2 Modal Identification in the Frequency Domain 

Tvo principles have to be described. The first is 

phase resonance testing and the second is the phase separ

ation technique. Both methods are discussed in detail in 

/1.5/· The phase reaonance method as deacribed in Chapter 
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1.2 involves the isolation of one natural mode by har

monical excitation with an appropriate force amplitude 

vector (1.20b). Theoretically this vector is one of n 

necessary linearly independent exci ta tion vectors and is 

often chosen approximately. Therefore the vibration in the 

considered generalized one degree-of-freedom is biased a 

priori. The eigenvector components are measured directly; 

various Observations can be repeated several times and 

then averaged in order to reduce the random Observation 

errors. The remaining modal quanti ties follow from curve 

fitting the real and imaginary parts of the frequency 

response functions measured at various measurement points. 

The variances of these estimates do not give an indication 

of their errors, because the deterministic deviation due 

to non-appropriation of the excitation is unknown. In 

practice it is impossible to determine more than one gen

eralized damping value for each natural mode. Determina

tion of the generalized masses generally requires an addi

tional test. This test is done with additional forces 

shifted by H/2 compared with the excitation used, or with 

additional stiffnesses or masses (for example, electrical

ly simulated). 

The detection of eigenfrequencies dependent on the 

chosen excitation is accomplished by using the indicator 

function defined by the weighted sum of phase shifts (in

stead of zeros). The weighting is done with the approxi-

65 
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mate local kinetic energies in the measuring points. This 

sum is then normalized by the corresponding total kinetic 

energy. An example is shown in Fig. 3.4. Besides the de-

tection of eigenfrequencies one can also assess the appro-

priation of the excitation by the corresponding ordinates 

deviating from zero. 

~'Po·'' 

, -------------

FIG.3.4 EXAMPLE OF AN INDICATOR FUNCTION 
FOR A GIVEN VECTOR Po 

One can try to eliminate non-resonant degrees-of-

freedom in the measured responses by error modelling (see, 

for example, Nyquist plots and the shift of their cen-

tres). 

The main advantage of this method is that it is 

simple from the mechanical point of view (single degree-

of-freedom vibration). The disadvantages are the 

- appropriation of excitation 

- testing expenditure 

- non-statistical approach a priori 
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- assumption of access to all the points necessary for 

attaching exci ters. 

The phase resonance method not infrequently fails 

when one of the previously summarized assumptions is not 

fulfilled, especially when there are closely neighboured 

ei~enfrequencies. 

In the second principle the excitation difficulties 

and the testing expenditure are shifted to the computa

tional side because the modes are now separated by compu

tation: the phase separation technique. It is based on the 

eigenvector decomposition of the measured and transformed 

(Fourier, Laplace) dynamic responses of the system due to 

measur~d and transformed excitation (including equal to 

zero), as given in Chapter 1.2. The choice of excitation 

(see Chapter 2.2) depends on several facts, starting with 

the availability, investigation of the frequency interval 

desired etc. 

Assuming weakly damped systems and taking Eq. (1.14) 

into consideration, the estimation can be performed by 

choosing various parameters, e.g. the modal quantities 

themselves, elements of matrices. Various estimation pro

cedures can also be applied. The diversity of the existing 

methods is not to be discussed here, and the reader's 
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attention must be dravn to the folloving fact. An (stati

stical) estimation procedure is a priori applied, vhich 

means that it is also possible to estimate the variances 

(standard deviations) of the estimates. The order determi

nation of the response matrix used (number of effective 

degrees-of-freedom in a partial frequency interval much 

smaller than the interval one is interested in) can be a 

difficult problem, but iteratively chosen numbers and 

various estimations vith them help to overcome this 

problem (see /3.26, 1.5/). 

As contained in /1.5/, the first fully developed 

phase separation method was published in 1968 /3.27/ by 

the senior author ueing frequency response functions and 

an approximate instrumental variables method for propor

tional damping, and in 1971 /3.28/ for non-proportional 

damping. These methods vere based on and extended from the 

publications of Stahle and Forlifer /3.29, 3.30/. In the 

US the bu.ilding block approach by Klosterman /"3.31, 3.'32/ 

has become very common. One additional procedure by Witt

meyer should be mentioned /3.33/· He uses the expansion of 

the dynamic response of a structurally damped system vith 

respect to the eigenvectors in the frequency domain. Left 

multiplication of the equation by one transposed left

eigenvector vith the use of the orthonormalization rela

tionship provides the eigenquantities of one degree-of-
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freedom. This equation is used to estimate these eigen

quantities. This is a very simple procedure from a theore

tical point of view. 

With respect to Fig. 1.5, the methods belonging to 

the test model alone can be classified. The measurements 

are non-parametrical (input/output), but the result of the 

test model as modal quantities requires a structured model 

as a priori knowledge, namely the structured equation of 

motion. No further prior knowledge is contained in this 

identification method. Finally, the reader's attention is 

drawn again to the survey /3.25/. 

3.3 Identification of Physical Parameters without and 

with Knowledge of the Mathematical Model within the 

the Frequency Domain 

With regard to Fig. 1.5, we now want to include as 

much a priori knowledge as possible within identification 

by improving (adjusting) the mathematical model through 

the use of measured values /1.1, 1.5, 3.25/. For example, 

if we look at Eq. (1.29), the prior knowledge is included 

with Ge 'I 0. If we choose Ge • 0, the prior knowledge is 

reduced to the structured model by the choice of resi-
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duale, and the prior values can be taken as initial values 

for an iterative procedure. 

Next, the two problems concerning the choice of para-

meters and the choice of residuale have to be solved. The 

parameter matrices of the prior mathematical model (1.11) 

(or an equivalent one) may be partitioned in the form 

(3.05) 

IC = ± IC, , or IC-1 = G = ± G, 

due to subsystems. This subsystem modelling can be found 

- by looking for real subsystems 

- due to partitioning dynamic coordinates (e.g. bending, 

torsion) 

- through matrices of the connection elements of subsystems 

- through matrices related to design variables. 

By introducing global, factorial parameters a j wi th 

respect to the parameter matrices of the subsystems, which 
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ought to be estimated, one obtains the parameter matrices 

to be improved: 

a 

J 

~Ca.,.) := f•woMo • ... :: {•wo} • 0•1 

Be (aB) :: t Asp B •• :: {•ap} • P•l p 
(3.06) 

J:C(ak) := ± •~t&. x, • .k := {ak&.} or 
&.•1 

Gc(ao) == ± •o&. G&. •o ·- {ao~.} . 
&.•1 

With the estimated values ll 
aj• where the aj are 

•{aj}• ( a M • aB • aK)T or ( a M • aB, aG)T. j •1(1)J, 

. S+R+I, the improved identified parameter matrices are 

~ == Mcct.,., . 

a ·= scct.) 

l:= x:c ctx) or 

As can be easily seen, 

(3.07) 
A c A G = G Ca0 ) . 

the matrices (3.05) of the 

prior computational model are obtained with a • e • { 1 }. 

It can also be seen that a global as well as an element-

wise improvement can be carried out. The aj can be inter

preted as linearized dimensionlese design variables. 
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The selection of the submatrices can be assisted by 

- a priori knowledge 

- sensitivity analysis, and 

- if necessary by re-calculations. 

The objective of the investigations concerning the 

dynamic behaviour of the system may be to predict the 

dynamic variables ai' i • 1 (1 )lloc , within a given accu

racy. The corresponding measured (identified) quantities 

A 
a r e d e n o t e d b y IXr , r • 1 ( 1 ) N , an d t h o s e o f t h e c o m p u t a -

tional model tobe corrected by a~(a). The residuale are 

then defined by 

:= ~ - cxC(a) 
r r 

which are assembled in the residuum vector 

v(a) := { vr(a)} . 

ofEq. (1.29). 

(3.08) 

(3.09) 

Various possibilities exist for the choice of resi-

duals: input residuale, output residuale, partial resi-

duals with respect to eigenquantities, equation error of 

the eigenvalue problem and the decomposi tion of physical 

parameter matrices with respect to eigenvectors. 
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Input Residuale: Fig. 3·5 

In the dynamic response problem the input (forcing) and 

output (response) signals are measured and transformed in 

the s-domain assuming zero initial conditions. For appli-

cations when using data corrupted by noise see /3-34, 

3·35/· The computational model is then written in the 

stiffness formulation by 

(s1 M + sB + 10 U(s) = P(s) , (3.10) 

in which the matrixBis a first (rough) estimation of the 

"true" damping matrix /3.37/. The measured and transformed 
l::J. l::J. l::J. l::J. 

signals are denoted by Ur: • U(sr), Pr: "'P(sr) with dis-

tinct values of s. The input residuale are then defined by 

A 
v1r ::Pr- P~(a) (3.11) 

with 

(3.12) 

and the parametrization (3.06). As can be inferred from 

Eq. (3.12) in association with Eq. (1.29) and Eq. (3.06), 

the residuum vector is linear in the parameters, and 

therefore the estimation procedure leads to a linear sys-

tem of equations. This fact is advantageous, but experi-
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ence with this form of identification procedure shows its 

sensitivity to measuring errors /3.34/3.35/. 

NO ISE 
6 6 

_P-o---l SYSTEM .,__.o-_u_ 

FIG.J.S INPUT RESIDUALS 

Output Residuale: Fig. 3.6 

Output residuale are defined by 

(3.13) 

with 

(3.14) 

NOISE 

FIG.3 6 OUTPUT RESIDUALS 
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Because the inverse of the dynamic stiffness matrix 

appears in (3.14) and therefore in the residuum vector 

(3.09), the identification procedure is non-linear in the 

parameters. This procedure is discussed in /1.5, 3-36/ for 

undamped systems and in /1.5/ for damped systems. It is 

dealt with extensively in /3.34/. 

If one considers the transfer functions of a multi-

degree-of-freedom system, it can be seen that the choice 

of freq uenc i es Wr in the ne i gh bou rhood o f the sys te m re-

sonances with N > n provides the information which one 

obtains through the use of complete eigenquantities. 

Residuale from Eigenquantities: 

Full information which could be gathered from identifica-

tion for each degree-of-freedom under consideration (phase 

resonance) is obtained from 

• ~r the measured eigenfrequency 

• Dar the measured eigenmode 

• mgr the measured generalized mass (norm), 

m :: "T ~~<•" gr Uor-Uor 
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A 
2cxr the measured damping ratio, 

:or the measured (in general approximately) appropriate 

force vector: in order to excite the dynamic re-

sponse equal to Eq. (1.20b) 

A 
Aa~e the measured phase shifts, which ought to be as small 

as possi ble. 

We will restriet ourselves to the eigenquantities of 

the associated undamped system; for the damped systems see 

/1.5/· The index r will run from 1 to N, with, in gen-

eral, N < n. Because parts of the measured eigenquantities 

are the dynamic responses of special known forcings we can 

define input residuale 

A C 
Vlr 1= Por- Por (3.15) 

and partial residuale 

(3.16) 
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6 
~= cx - cxC r r 

(3.17) 

with 

(3.18) 

(3.19) 

(3.20) 

The residuum vector may then be defined by 

The following formalism conforms to the explanations 

of Section 1.5. The formalism may, of course, be executed 

for a number of measured generalized masses different from 

those of eigenmodes etc. 

The calculation of examples with simulated test re-

sults clearly show the large influence of erroneous 

measured generalized masses and the effect of chosen phy-

sically non-compatible submatrices (subsystems) on the 

estimation /3·37/. If the errors of the measured gener-

alized masses are large, these magnitudes should be 

ignored in the estimation of the parameters aj. 
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The identification of eigenmagnitudes using the phase 

resonance method seldom implies the measurement of phase 

shifts. The input residuale as employed above cannot be 

used without these data. In this case, the error of the 

matrix eigenvalue equation is taken instead: 

v := (-•• Mc + JCC) t er Wir 8 or • {3.22) 

The residual 

is introduced in order to use the measured excitation. The 

residuale (3.19) and (3.20) complete the use of measured 

quantities. By reducing the number of residuale (3.23) by 

~T left-multiplication with u 0 r and obtaining 

{3.24) 

one can define a residuum vector vB similar to vA. The resi-

duale again only depend linearly on the parameters aj. More

ovar, ver and vmr depend only on the parameters aMO and aKL" 

The re s i d ua ls v pr and vQ(r de pe nd only on aBP" The re fore the 

estimation problem can be split and handled in two parts. 
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Calculationa vith thia method provided aimilar ex-

perience aa vith the method deacribed above. It vaa also 

poaaible to aee that the reaulta are lese accurate than 

vith the previoua method. 

It ia poaaible to reduce the information baaia of the 

eatimation procedure even further. If only meaaured eigen-

frequenciea are available, the eatimation procedure ia 

based on partial residuale 

• y ·= :"'.1 - ~· wr ""'r -ur 

or on the equation error 

in combination vith the normalization condition. In both 

casea the method ia non-linear in the parametera becauae 

of the dependency of the eigenvectora uC 0 r(a) on a. The 

method baaed on the residuale (:~.25) ia publiahed in 

/3.38/ and applied in /3-39/· A detailed diacuaaion of the 

method vith (3.25) and (3.26) can be found in /1.5/. 

If eigenfrequenciea and eigenvectora are meaaured, 

the partial residuale 

79 
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(3.27) 

can be taken /1 .5/. 

Good experience has been gained using the equation 

error (3.22) combined with the normalization equation, 

which yield a linear WLS-estimator as in the case of input 

residuale. No one-to-one relationship between measured and 

calculated modes is necessary with this linear method. The 

experience mentioned above was gained from Simulations 

with a viscous damped system /3.35/ for which these con-

siderations hold true. 

Another approach without using estimation methods di-

rectly, but indirectly through the application of pseudo-

inverses, employs the modal decomposition of the physical 

parameter matrices for improvement /3.40/. In addition, 

one can introduce ~ norm of the matrices and "minimize" it 

together with some restrictions /3.41, 3.42/. For the 

application of these methods in structural optimization 

see /3.43/. 

For a brief review see /3.25/. A discussion of when 

modal quantities and when physical parameter values should 

be estimated is discussed in /3.44/. The conversion of 
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modal quantities of the damped system into those of the 

associated undamped system by using improvement methods is 

descri bed in /3.45/. 

It should be mentioned that the enumerated updating 

methods can be used for the order reduction of a mathe

matical model. Instead of measured quantities one may take 

computed ones and use these data for updating or estimat

ing the parameters of a reduced order model. However, 

problems of physical compatibility will then arise. 

3.4 Input Identification 

The knowledge of oparational loads is important for 

the dynamic assessment of systems to be designed as well 

as for existing systems. The direct measurement of input 

forces is often difficult or impossible, and then input 

identification has to be carried out (under working condi

tions). 

The equation of motion in the time domain is the 

convolution integral. For causal systems with dynamic re

sponse u(t) with initial conditions equal to zero and an 

excitation p(t), the convolution sum holde true for the 

one degree-of-freedom system 

81 



www.manaraa.com

82 H.G. Natke • N. Cottin 

(~.?P) 

where index i denotes the instant t 1 , h is the tirne incr~>-

ment and gk the response function due to the unit impulsP 

t){t). As can be seen, the deconvolution is possiblc if u 1 

and gk are known, but carrying out the deconvolution nu-

merically is often an unstable process /1.5/. 

Input identification is thus mainly performed in thP 

frequency domain using Eq. (1.2) or (1.3) as basic equ:!-

tions. One idea for determininp, the Pxcitation is to 

measure it mainly statically with a dynamic correction. 

Assuming the structured model (1.11) in the- frequency 

domain and neglecting the dampinR forces one obtains 

P(jw) • K U(jw)- wiM U(jw) . 

This equation can be modified by expandinP. the dy-

namic term by modal quantities. Without usin~ statistical 

methods this approach is used in /3.46/. 

By applying the non-structured equation (1.2) or 

(1.3) the transformed dynamic response signal corrupted by 

noise is used directly with a known frequency response 

function matrix or a transfer function matrix respectively 
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(which may be estimated by using artificial test signals): 

P(jc.>) = S(jc.>) U(jc.>) = F-1(jc.>) U(jc.>) . 

Noise reduction can be achieved using estimation pro-

cedures and with regard to the output signals when esti

mates of the outputs (spectral densities) are made and 

estimates of the inputs are determined: 

(3.30) 

or 

(3.31) 

when FT is.the transposed and F* the conjugate complex 

f r e q u e n c y r e s p o n s e f u n c t i o n m a t r i x , S p p (w) i s t h e m a t r i x 

of excitation spectral densities, Suu(W) is the matrix of 

output spectral densities and Spu(W) the matrix of cross 

spectral densities between input and output. Approxi

mations of the spectral densities obtained from time 

series analysis can be introduced. The inversion of the 

previously identified matrix F(jW) may cause difficulties 

in the case of lightly damped modes, but here the use of 

the Laplace transform can improve the results by dealing 

with additional damping (which means taking the transfer 

83 
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functions). In addition, the modal decomposition of F(jW) 

can be used. 

Instead of assigning the equation of motion (e.p. the 

state space formulation) directly, a modal transfor~ation 

can be used /1.14, :3.47/. In general the modal transforma

tion has tobe applied with a smaller number of modes than 

degrees-of-freedom, and in consequence the pseudo-inverse 

of the modal matrix appears. The assumption that the num

ber of non-zero components of the force vector must be 

smaller than the number of used modes has to be fulfilled 

/:3.47/• In general, the truncation error of the modal 

decom~osition is unknown. 

'·5 Identification of Non-Linearities 

The structure (of the model!) identification when 

dealing with linear systems is a relatively easy task, but 

the choice of damping and the assumption of the order of 

the system can involve difficulties. The modelling of non

linear behaviour is difficult in various ways. First of 

all, nonlinearities have to be detected. This is done 

mainly by testing the system harmonically (as the most 

effective when compared with other excitations) with 

different levels of response (!) amplitudes (and by look

ing for violated assumptions due to linear behaviour: Ny-
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quist C'Urves responsP spectrum, beat frequency locus 

r:.4f/), S€'f' Fir ..... 7. Another approach is the use of 

indicrtor functions such as the ~IG-function /3.49/. In 

P.cdition, the HilbPrt transform serves for showing the 

prf'!'IE'nce of nonlinearities. The real and imaginary parts 

of the frequency response function of a linear system are 

dirPctly related by the (discrete) Hilbert transform (H): 

F ( J Ia\) = pr• ( J wk) + J plm ( J wk) = H { ptm(j wk) } + J H { F- (j wk)} . 

Jf nonlinearities appear in the measurements, the 

real nnd ima~inary parts of the above equation are not 

identical any more. 

When nonlinearities have been detected, the last step 

is structure identification. This step is based on 

- physics 

- the pattern 

- experience 

- the high order correlation function 

- the dispersion function /3.52/ 

- using special test signals. 

85 

With the known structure of the model the identification is 

. reduced to parameter estimation (Fig. 3.7). 



www.manaraa.com

86 

RECOGNITION 
OF TYPE CF 

NONLINEARITY: 
STRUCTURE 10. 

FIG. 3.7 GENERAL DENTIACATION 
PROCEOURE 

H.G. Natke - N. Cottin 

The usual (classical) approaches to the identifica-

tion of nonlinear systems are 

- Volterra series with high computation and storage expen-

diture, and the disadvantage that no hysteretic terms 

can be represented, 

- the Wiener kernel approach, in which no hysteretic terms 

can be handled and which is restricted to white Gaussian 

input. 
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Instead of general function series one can, for 

example, take Tshebyshev polynomials. However, in every 

case the order of the structure is given by the a priori 

choice of the number of terms. Therefore identification is 

reduced to parameter identification. Modifications of the 

procedures previously mentioned have been published, as 

well as special integral operators (concerning sub

systems), see the refs. in /3.51/. Another well-known 

approach uses 

- dispersion functions /3.52/. 

The following are common in practice 

- statistical linearization and the 

- piecewise linearized and displacement -dependent (para-

metrical) investigation of syetems mainly using harmonic 

excitation and the phase resonance technique. 

- Subsystem modelling and testing are also used, in which 

nonlinear elements between subsystems are replaced by 

linear elements with known dynamic properties (synthe

sis). The nonlinear elements are tested (identified} 

separately and combined with the linear subsystems by 

compu ta tion. 

The resder can find a review of the identification of non

linear systems in /3.51, 3.53, 3.54/, and the cited refs. 

there. Investigations into the identification of a system 

with modelled cubic stiffness and damping term can be 

found in /3·55, 3·56, 3·57/• 

87 
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A 11 r e f s • :1- a v e i r: c o ::: rr. o r. t t. e f ll c t t ~- ··. t t t •.- :'! o d •· 1 

structure has been selected. The v.c.lidatior: o" ~r.t: r.::oc'f'1 

will then be proven by i~s sienificAnc~ (physi~Al ~~d 

statistical). 

Order determination by iterqtiV@ ~nd rPcursivP pro~~-

dures are known, and for rcprese~tations of nG~li~o~r fo1·-

ces by polynomials this is described in /~.51, ).5f'./. 

H o w e v e r , t h e e s t i m a t i o n o f t h e p o w e r o f t 1": P. p o 1 y n o m i a 1 

together with th9 polynornial coeffici~r.ts i~ not known in 

the litersture as far the ßuthors qre aw~re. ThP read~r 

can find first considerlitions in this dirPction in /1.12, 

3.58/. The blisic idea of this new dev~lop~ent should bP 

mentioned here. The basic ~qu..,tion is the r<:>cursiv€· CQua-

tion of economization in approximatio~ th0ory: 

'•-•(x) • P.(x)- 2~. T.(x) , 

P.(x) - pol,._... of poww a 

T.(x) - T....."._ pol,_.... of power a 

•. - a-tla coefflelnt of the TahebyabeY pol,_ ... a. 

It is assumed that the nonlinPRr behaviour cnn ~~ 

described by a polynomial. In Eq. (3.32) Pn(x) is sub~ti

tuted by measurements pfl. (x) and the equ~tion solv€-d 4'or 

n. This can be performed in different ways /3.~P./, f:'•P.• by 

taking into consideration an integral formulAtion with 

respect to x or a discretized version Rnd then estirnatinp, 

n by aversging ni • n(xi). 
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An example with A ~imulation of a polynomial 

P1 (a) • aU + O.Sa1 - O.Ola4 + 0.0000ha6 ). a •= x/a. a • 3. 

is prest>nted in /1.12/ for various uniformly distributed 

neasurinp (!rrora. In order to avoid the residuale pM(x)-

Pn-t (x), nn i tt>rati ve procedure is formulated depending on 

A x1 hnd nvera~ed: n. Table ~.1 shovs the result for assumed 

uniformly distributed measuring errors, parametrically 

8ssumed n and the mean value t vith its standerd deviation 

a~. It can be concluded that the smallest value of ~ vith 

the smnllest standnrd devintion can be chosen (including 

the result with only one true decimal digit) as a result. 

Other cnlculations with different abscissae give similar 

rf'sults. 

The lnst approach to the power estimation of polyno-

mial-like nonlinearity mentioned here is associated vith 

the extended WL~ term in model improvement (Section ,.,): 

89 
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TABLE 3.1 POWER ESTIMATION 

UNIFORMLY n A 

DISTR.ERR. n t af. 

tO 5 5.36 0.22 
7 7.03 0.01 
9 9.00 0.00 

t 0.0005 5 5.36 0.22 
7 7.02 0.01 
9 8.97 0.01 

t 0.005 5 5.36 022 
7 6.98 0.05 
9 8.82 0.05 

!.0.05 5 520 0.15 
7 5.85 0.30 
9 7.47 0.34 

a(o), n(o) are the prior knowledge of the polynomial re-

presenting the nonlinearity. The 3rd term is like a penal-

ty function, which makes the problem (3.33) dependent on 

gn into a convex one. The power estimation is controlled 

here by the choice of the weighting matrices. One diffi-

culty is how to choose gn, and the second difficulty li~s 

in the mixed yroblem of continuous and integer variables. 
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1. Introduction 

In a static analysis of a structure, dividing the 

structure into a large nurober of finite elements in most 

cases gives a satisfactory solution. In a dynamic analysis, 

however, division into more units does not necessarily give 

better results. Such factors as damping, excitation forces, 

support stiffnesses etc., often cannot be determined accura-

tely, and even sophisticated measurements do not give satis-

factory results, because of the random nature of these 

quantities. 
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A useful method for solving this problern consists of 

parameter estimation using measurements of Vibrations and 

excitations. For example, one can assume a structured dis

crete model with lumped masses for a vibrating off-shore 

structure, and from the recorded vibratory data of the 

structure one can determine the damping, mass, and stiffness 

matrices. One may also assume a mathematical model, such as 

the ARMA model, of the structure, and from the recorded 

vibrational data estimate its parameters. 

In such an approach one of the important questions that 

arises is the order of the model. What is the best nurober of 

degrees of freedom of the model? What is the best order of 

the ARMA model? Experience shows that increasing the order 

of a model increases the accuracy of the results, but 

starting from the order number, which we can call critical, 

the accuracy increases slowly, or not at all. 

Several methods for the evaluation of the system order 

have been developed /1,9,14-21/. Hereweshall discuss only 

one, briefly called balancing. The method was originally 

developed by Moore /14/, and further developed by Parnebo, 

Silverman /15/, Shokoohi, Silverman, Van Dooren /16/, Gaw

ronski and Natke /1,2/. 
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2. System Balancing - Moore's Approach 

In this paragraph we shall consider the continuous-time 

system only (the discrete-time case is similar and can be 

found in /14/). The system is given by the equation 

:!!: = Ax + Bu, y = Cx ( 2.1) 

where n 
X € R , u € Rp • In the following the 

triple (A,B,C) is called the representation of the system. 

It is well known that the system is fully controllab1e 

and observable if the controllability t and observability 0 

matrices 

[ n-1 ] e = B AB •••• A B (2.2) 

( 2. 3) 

are of full rank. In like manner, the system is fully con-

trollable and observable if the controllability and observa-

bility grammians 

• T = J eAt B BT eAtdt ( 2. 4) 
0 
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ao AT t =Je 
0 

are positive definite. 
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dt ( 2. 5) 

Let R be the linear nonsingular transformation of the 

state coordinates 

X = Rx , ( 2. 6) 

then the new state representation (A,B,C) is obtained from 

(A,B,C) as 

A = -1 R A R, B, C = C R (2.7) 

The input-output relationship is invariant under the 

transformation R. However, the controllability and observa-

bility properties of the system depend on the chosen state 

variables, and the new controllability and observability 

matrices are given by 

( 2. 8) 

and the controllability and observability grammians by 
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W = R- 1 W R-T 
c c (2.9) 

(2.10) 

Moore's approach was as follows: for the controllable 

and observable system the grammians Wc' W0 shou1d be nonsin

gular. He chose the singular values of Wc and W0 as a 

measure of the controllability and the observability. Let Wc 

have the following singular values d 1 , d2 , ••• , dn ordered 

suchthat di ~ di+1 ' i = 1, ••• ,n-1. If for some mcn one has 

dm>> dm+1 one can say that m state variables are strongly 

controlled, and n-m state variables are weakly controlled. 

If the same is valid for the observability grammian, one can 

say that m state variables are strongly observed and n-m 

state variables are weakly observed. But which one is 

strongly, and which one is weakly observed and controlled? 

And the other question follows: does a transformation R of 

state variables exist, such that the controllability and 

observability grammians are equal and diagonal? If so, they 

have the same singular values, and, at the same time, it is 

known which state variable "belongs" to which singular 

value. Of course, the answer is positive as regards the 

latter question. There is a nonsingular matrix R such that 

in the new state coordinates x given by (2.6) the controlla-

bility and observability grammians are 
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(2.11) 

where r is a diagonal matrix 

r = diag (ll , • • • , l n) • (2.12) 

These coordinates are called balanced coordinates, since the 

system is now equally controllable and observable. 

The balancing of symmetric systems was specifically 

investigated. A system is symmetric if its transfer function 

matrix is symmetric, or its Hanke! matrix H 

H = a e (2.13) 

is symmetric. The necessary (but not sufficient) condition 

for the system symmetry is the equality of its nurober of 

inputs and outputs, i.e. p = q. The single input and single 

output (SISO) system is always symmetric. The mechanical 

system with pick-ups and excitations located at the same 

place simultaneously, and for which the Betti principle is 

satisfied, is symmetric. 

The transformation matrix R to the balanced representa

tion is determined as follows /2,14/: 
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1 

R = v r u r- 2 
c c ol ol 
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(2.14) 

Wher~ VC, fc are obtained from the Singular va1ue decomposi

t1UO Of the matriX e 1 and thiS decompOSition is as follOWS: 

U T 
c (2.15) 

where uc and vc are orthonormal matrices, rc is a diagonal, 

positive detinite matrix, and ro1' uo1 are determined from 

thf:! Singular Value decomposition Of the matriX 01 = 0 VCfC, 

which is in the form 

(2.16) 

Balancing is a tool for the system reduction. If a 

system is balanced, i.e. (2.11) is fulfilled, and additio-

nally, for some m<n one has l m>>'{ m+1 then the last n-m 

state variables are weakly controllab1e and, at the same 

time, weakly observable. For this reason they can be omitted 

in the state representation, since they have little influ-

ence on the input-output relationship. 
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Example 2.1. /2/ A system with the fo1lowing state 

space representation 

0 1 0 1 

A = 0 0 1 , B = 0.65 c = ( 1 o o) 

-0.3250 0.0202 0.1500 0 

is considered. Its balancing coefficients are 

r = diag(1.2937, 0.8614, 0.0070) 

and its balanced representation (A,B,C) is obtained 

[ 0.4515 -0.5853 0.0006 

] r-0385J 
.A = 0.5853 0.3486 0.0053 B 0.2801 , 

0.0006 -0.0053 -0.6501 0.0027 

c = [ -1.0385 -0.2801 0.0027 1 • 

For this system l 2>>l3 , it can therefore be reduced, 

leaving only the first two state variables in the balanced 

representation, and the reduced representation is as follows 
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Är = [ 0.4515 -0.5853] , 

0.5853 0.3486 

er= [-1.0385 -0.28011 • 

är = r-1.0385 l , 
0.2801 

3. Alternative Approach to System Balancing 

119 

The alternative approach to balancing was presented 

in /1/. 

3.1 Continous time balanced systems. In the Appendix 

and in /3/ it is shown that the grammians can be expressed 

by the observability and controllability matrices as follows: 

T = e (Q(t> ® ~> e , (3 .1) 

where ® denotes a Kronecker product, and the grammians are 

defined now as 

t 

./ (3. 2) 
0 
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w (t) 
0 

t 
·I 

0 

AT e dT • 

The matrix Q(t) is obtained from 

Q(t) = v-1 D(t) v-T 

with the matrices V and D(t) us follows: 

V = 

1 

1 

D(t) = ( d .. (t)), 
l.J 

.... 

dij (t) = 

n-1 
An 

l.,j=l, ••• ,n. 

Let the matrix Q(t) be decomposed in the followinq way: 

Q(t) = L(t) LT (t) 

( 3. 3) 

( 3. 4) 

( 3. 5) 

( 3. 6) 

( 3. 7) 

(for example, the Cholesky decomposition or the sinqular 

value decomposition can be used). Defining further 
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(3.8) 

and 

o* (t) = L~(t) a (3.9) 

we obtain the grammians in the form 

* * *T a* Wc(t) = e (t) e (t) I Wo(t) = a (t) (t). (3.10) 

Note that Lc(t) and L0 (t) are invariant under the linear 

transformations of state coordinates1 therefore in the new 

coordinates we have 

l* (t) = R- 1 ( Lc (t) = R- 1 t * (t) 

~*(t) = L~(t) O'R = ~·(t) R. (3.11) 

The above notation allows us to introduce the following 

definition of the balanced system: 

Definition 3.1. The realization (Ä,B,C) of the linear 

system (2.1) is balanced over the interval [ O,T] if there is 

' such a nonsingular matrix R that the singular value decompo

sition of the matrices f*(T) = R- 1 t*(T) and a(T) = ~·(T) R 

are in the förm 

l* (T) = r (T) UT (T), * e (T) = V (T) r(T) (3 .12) 
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where V (T) = ( V 1 (T) • • • V n (T) ) 1 U (T) = ( u1 (T) • • • un (T) ) , 

VTV = UTU =I, and r(T) = diag(li(T)), i=1, ••• ,n is a 

positive definite matrix. The vectors vi(t) and ui(t) are 

ca1led the balanced modes, and li(T) are called the balan

cing coefficients over the interval [o,T]. 

For the ba1anced system the contro11ability and obser-

vability grammians are positive definite diagonal matrices 

t* (T) e*T (T) = 8*T (T) ä* (T) = r 2 (T) • (3.13) 

If T-• the system is balanced over the interval [ 0 1 •) , or 

simply balanced (in the sense of Moore). If the system is 

stable 1 the balanced representation over (0 1 •) always 

exists. In this case the matrices e* and a* are obtained 

from (3.9) 1 with Lc and L0 determined from (3.4) to (3.8) 1 

and the matrix D is given by 

i,j = 1 1 ••• 1 n. (3.14) 

The definition (3.12) of the balanced representation is 

valid for any linear system 1 not necessarily a symmetric 

one. 
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For the symmetric system the balanced representation 

has the property that the balancing modes are connected by 

the relationship /2/ 

123 

u = v r (3.15) 

where r is the sign matrix, r = diag (ai), i=l, ••• ,n, and 

a.= 1 or a. = -1; the balanced representation <Ä,s,c) also 
1 1 

shows the sign symmetry, i.e. 

(3.16) 

3.2 Discrete-time balanced systems. The system consi

dered here has the following representation (A,B.C) 

= = (3.17) 

with dim xi = n, dim ui = p, dim yi = q, as before •. In addi

tion, we assume the system to be completely reachable and 

observable, with A having distinct eigenvalues A1 , ••• ,An. 

The linear transformation x = R x gives the new representa

tion (Ä,B,C) which is connected with the representation 

(A,B,C) by (2.7). The reachability ( and observability ~ 

matrices of the representation (A,B,C) are given by (2.2) 

and (2.3), and of (Ä,B,C) by (2.8). 
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We further consider the system within the time interval 

* * (o,N], and assume N ~n. Thematrices ! (N) and a (N) are 

defined as follows: 

* CJ(N) = L0 (N) 0' 

where 

~c(N) = L(N) ® I q 

(3.18) 

(3.19) 

The matrix L(N) is obtained from the decomposition of the 

mat.rix Q(N) 

Q(N) = L(N) LT(N) (3.20) 

and Q(N) is obtained from 

( 3. 21) 

The matrix V is given by (3.5), and D(N) is determined from 

D(N) = (AiA~)N -1 , i,j=1, ••• ,n. (3.22) •uxj -1 
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Similarly to the continuous time system, in the new coordi-

n<1tes we have 

-* * (1 (N) := (J{N) R. (3.23) 

From /3/ and the Appendix it follows that the reachability 

grammian over the interval [O,N] can be determined from 

W (N) = e (N) tT (N) c ( 3. 24) 

where the grammian is defined as follows: 

N 

(3.25) 

i=o 

The observability grammian over the interval(O,N]is defined 

similarly as 

N 

wo (N) = L 
i=o 

and can be determined from the following formula: 

W (N) = tr*T {N) Cl* {N) • 
0 

(3.26) 

(3.27) 



www.manaraa.com

126 W. Gawronski - H.G. Natke 

The system (2.1) has be representation (Ä,B,C) balanced, if 

the following conditions are fulfilled: 

Definition 3.2. The realization (Ä,B,C) of the linear 

discretetime system is balanced over the interval [ O,N], if 

a nonsingular matrix R exists such that the singular value 

decomposition of the matrices e*(N) = R-l e*(N) and 

&(N) = a*(N) Rare in the form 

e* (N) = r (N) UT {N) I 
- * a {N) = V(N) r {N) (3.28) 

where V(N) = [v1 (N) ••• vn (N)], U{N) = [u1 (N) ••• un(N)], 

VTV = UTU =I, and r(N) = diag (li(N)) I i=l, ••• ,n, is a 

positive definite matrix. The vectors v. (N) and u. (N) are 
1 1 

called the balancing modes, and li(N) the balancing coeffi-

cients over the interval [ O,N], and v. € R np , u. € R nq 
1 1 

For the balanced system the reachability and observabi-

lity grammians are positive definite diagonal matrices 

l* (N) l*T {N) = (j*T (N) 0'* {N) = r 2 (N) (3.29) 

If N-• the system is balanced over the interval [o, oo), or 

simply, balanced (in the sense of Moore). If the system is 
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stable the balanced representation over [ 0 1 ~) always 

* * exists. In this case the matrices e and ~ are obtained 

from (3.18) 1 with L and L determined from (3.19) 1 (3.20). 
c 0 

However 1 in this case the matrix D is given by 

D = (d .. ) 1 d .. 
~J ~J 

1 , i,j,=1, ••• 1 n (3.30) 

As before, the above definition is valid for arbitrary 

systems, and not necessarily symmetric ones. 

Let us define the extended reachability and observabi-

lity matrices 

e ( N ) = [ B AB • • . AN- l B ) , 0 ( N ) = [ C T (CA) T • • • (CA n - 1 ) T ) T 

(3.31) 

where N ~ n and N-n is the extension nurober. Using this 

definition the reachability and the observability grammians 

over[0 1 N] can be obtained simply as 

w (N) = ! (N) ( T (N) I w (N) =Cf T (N) CJ (N) 
c 0 

(3.32), 

This gives us the possibility of introducing the alternative 
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definition of the balanced representation over the interval 

[o, N]. 

Definition 3.3. The realization (Ä,B,C) of the linear 

discretetime system is balanced over the interval [O,N] if a 

nonsingular matrix R exists such that the singular value 

decomposition of the matrices l(N) = R-l e (N) I and 

ij(N) = a(N) R are in the form 

l(N) = r(N) uT(N), O(N) = v(N) r (N) (3.33) 

where V(N) = [v1 (N) ••• vn(N)) , U(N) = [u1 (N) ••• un(N)] , 

VTV = UTU =I, and r(N) = diag(li(N)), i=l, ••• ,n, is a posi

tive definite matrix. The vectors v. (N) and u. (N) are called 
l l. 

the balancing modes, and li (N) are called the balancing 

[ ] Np Nq coefficients over the interval 0, N , and v i € R , ui & R 

This definition, however, is not useful over the infi

nite interval [o,oo), since the matrices in (3.31) as well 

as the balancing vectors in this case have infinite dimen-

sions. 
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4. Transformation to the Balanced Representation 

In the following discussion no distinction has been 

made between continous and discrete time systems, nor 

between finite and infinite interval balancing, since the 

transformation given below is valid for any of the cases. 

* Let H be the transformed Hankel matrix of dimensions 

nq x np, obtained from 

* H = ( 4 .1) 

This matrix is invariant under linear transformations of the 

state coordinates, that is 

* 

* H = tJ * e* 

Let H have the following singular value decomposition 

* * Now we introduce e and 0 from the definition of the 

( 4. 2) 

( 4. 3) 

balanced system (see (3.12) or (3.28) to (4.2), obtaining 
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( 4. 4) 

Since Vh' Uh' and fh fulfil the conditions of the balanced 

system, and the singular value composition is unique, the 

comparison of (4.3) and (4.4) gives V = Vh' U = Uh' f =fh' 

i.e. the balanced representation is obtained from the singu-

lar value decomposition of the transformed Hankel matrix. 

In order to determine the balanced representation of 

the system, the transformation matrix R (and possibly R- 1 

without the inversion of R) is determined. It is done as 

follows: the introduction of (3.11) to (3.12), or (3.23) to 

(3.28), gives 

T -1 * * ru = R (. I V r = Cf R 

and therefore 

R __ .. * r-1 -1 r-1 T-..* 
~ U ,R = Vu ( 4. 5) 

The method is summarized as follows: 

* * * 1. Form the transformed Hankel matrix H = U (. • 

* 2. Find the singular value decomposition of H • 

3. Determine the transformation matrices R and R- 1 from 

(4.5). 

4. Determine the balanced representation from (2.7). 
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Consider the special case - the system in the observa

bility canonical form. For this case ~ = I, therefore 

H* = LT (L • The transformation matrices in this case are 
0 c 

obtained from the following formulas: 

R = L-T V f, R-l = f -l VT L T 
0 0 

( 4. 6) 

where U, V, f are obtained frorn the Singular value decompo-

* sition of H = LT eL 
0 c. 

Example 4.1. The balanced representation of the system 

with the following triple (A,B,C) 

is determined. 

We follow the procedure given above. 

* 1. The matrix H is determined. Since the eigenvalues of A 

are 

A1 = -5.oooo + j 8.6603, A2 = -5.oooo - j 8.6603 
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the matrix Q, determined from (3.4), is 

Q = [1. 0000 

0.0050 

0.0050 l 
0.0005 

W. Gawronski- H.G. Natke 

so that L, obtained from (3.7) by the Cholesky factorization 

of Q, is 

0.3162 o.oooo 

L = 
o .• 0158 0.0158 

The controllability and observability matrices of the 

system, are as follows: 

0 0 
-100 l , 

-10 1 1 

* * and the transformed matrices (, and 0, obtained from (3.9) 

are 
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t * = 'C L = [0. 0158 

1.5811 

133 

0.0158] 

-0.1581 

= [ 
0.3162 

o*T = 0(L® ~) 

0.0158 

-1.5811 o.oooo 
-1.5811]· 

-0.1581 0.1581 0.0158 

* The matrix H is therefore determined 

u*=a*(= 

0.0075 

o.oooo 
0.0025 

-0.0500 

0.0025 -0.0025 

-0.0500 0.0000 

* 2. The singular value decomposition of H gives 

-0.9733 -0.2298 

r = diag(0.2251, 0.2238)' u = 

-0.2298 0.9733 

-0.1555 0.2268 -0.0367 0.9608 

0.0142 -o. 9714 -0.0600 0.2293 
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3. The transformation matrices R and R-1 are determined from 

(4.5), and we obtain 

[ 

-0.0845 

R = 
0.5224 

0 0 0525] I 

-0.8492 

R- 1 = [-8.5616 

5.2623 

-0.5291] • 

-0.8515 

4. Fina11y, the balanced representation is obtained from 

( 2. 7) 

-2.7639 5.584 -0.5291 

A· = 8 = 
-14.3931 -7.2361 -0.8515 

[ 
-0.0845 

c = 
-0.5224 

0.0525]· 

-0.8498 

Example 4.2. ~he balanced representation is determined 

for the system with matrices A and B in Example 4.1, and the 

matric C is as follows 

c=[1 o]. 

This system is symmetric and in the observability canonical 

form. We continue to follow the procedure given above. 
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* 1. The determination of the matrix H • Since the considered 

system has the same matrices A and B as the system in 

* Example 4.1, the matrix L, and the matrices t, ~ are 

therefore as in the above example. The observability matrix 

is a unit matrix, since the system is in the observability 

canonical form. For this reason we have 

[

0.0075 

H* = LT e L = 
0.0025 

0. 0025] • 

-0.0025 

* 2. The singular value decomposition of H gives 

r = diag(0.0899, 0.0556) 

u = [ -0.9733 

0.2298 

-0.2298] 

I V 

0.9733 

[

-0.9733 

= ur= 
-0.2298 

0.2298] I 

-0.9733 

r = diag(11 -1). 

3. The transformtion matrices are obtained from (4.6) 

R = [ -0.2115 

-1.3070 

0.2115]1 

-3.4n7 

R_ 1 = r-3.4217 

1. 3070 

-0.2115] • 

-0.2115 
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4. The balanced representation is obtained from (2.7) 

-2.7639 8.944l [-0.2115] ' 
Ä = B = 

-8.9443 -7.2361 -0 0 2115 

c = [ -0.2115 0.2115], 

and is sign-symmetric. 

5. Properties of the Balanced System 

We determine the new properties, leaving aside the 

well-known properties of the ba1anced system, which are 

shown e1sewhere, see /14- 16/. In further considerations 

the input u is considered to be random uncorrelated statio
T nary, with zero mean value, i.e. E(u) = 0, R = E(u u ) = I, u p 

~ is the unit matrix. 

Property 1. If the system is balanced over the interval 

(o,•), then its steady state response x(t) is uncorrelated, 

with the covariance matrix as follows: 
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( 5.1) 

Where r = diaq (li) 1 and l i iS the i-th balancinq COeffi

Cient. Proof can be found in /1/. 

Property 2. For the stationary output, with input beinq 

uncorrelated noise, the output index Jy 

2 T 
Jy = lly II = E(y y) = tr Ry (5.2) 

is majorized as follows: 

(5.3) 

where a = tr(A). 

Proof can be found in /1/. 

If the input is a correlated stationary noise with the 

symmetric positive definite covariance matrix Ru F I, then 

the stationary response of the system with the representa-

tion (A,B,C) is equal to the response of the system with the 

-representation (A,B,C) and uncorrelated input, where 

-B = B M (5.4) 
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and M is obtained from the decomposition of Ru 

(5.5) 

( see /1/) • 

Similarly, if the output index is weighted with the 

weight matrix P being symmetric positive definite 

then the weighted index of (A,B,C) is equal to the un

weighted index of (A,B,C), where 

c = s c 

and S is obtained from the decomposition of the weight 

matrix 

P = ST S • 

6. Model Reduction 

(5.6) 

(5.7) 

( 5. 8) 

It was shown /1,14,15/ that the system order can be 

reduced if some of the state variables are slightly in-
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fluenced by input and, at the same time, weakly observed by 

the output. 

The influence of the input on the state variables, and 

the state variables on the output, is evaluated by the 

balancing coefficients. Let the balancing coefficients be 

erdered such that l' i ~ l' i+l, and l' m » l' m+l then one concludes 

that the state variables xi, for i=m+l, ••• ,n are much less 

affected by the input. Similarly, the state variables xi for 

i=m+l, ••• ,n affect the output much less than the variables 

-xi for i=l, ••• ,m. Forthat reason the system can be reduced 

by deleting the state variables xi for i=m+l, ••• ,n. Denoting 

J=[~ o] (6.1) 

we obtain the reduced balanced realization (Är,Br,Cr) as 

follows 

Är = J Ä J, ä = J ä, 
r ( 6. 2) 

which means it is obtained from the balanced realization by 

deleting the last n-m rows and columns of A, the last n-m 

rows of B, and the last n-m columns of c. 
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Next we determine how the reduction influences the 

output of the system. Let the reduction index ir be defined 

as 

( 6. 3) 

where Jy is the output index as defined by (5.2), Je is the 

approximation index given by 

(6.4) 

and ·e is the approximation error 

e = Y - Yr ( 6. 5) 

where y is the output of the original system and Yr is the 

output of the reduced system. From /1/ 

n 

tr r~ l: ~~ 
i=m+1 1 

0 ~ ir ~ 1 ir ~ r2 = n , 
tr 2: 2 ( 6. 6) 

i=1 l i 

where rd is the balancing coefficient matrix of the deleted 

state variables, rd = diag(lm+l'•••tln). 
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Example 6.1. The system with the followinq triple 

(A,B,C) 

A = 

c = 

0 

0 

-1.0000 

0.1000 

0 

0 

1 

0 

0 

0 

0.1000 

-0.1000 

0 

0 

is consid~red in this example. 

1 

0 

0 

1 

-0.1000 0.0100 

0.0100 -0.0100 

0 

1 

The followinq balancinq coefficients are obtained 

B = 

r = diaq(14.0281, 13.8372, 0.2916, 0.2844) 

as well as the followinq balanced representation 

Ä = 

-0.0044 

0.2987 

0.0006 

0.0006 

-0.2980 

-0.0045 

-0.0006 

-0.0006 

0.0005 

0.0003 

-0.0472 

-1.0300 

-0.0003 

-0.0006 1 

0.9791 

-0.0539 

8 = 

-1.3137 

1.3152 

0.0896 

0.0934 

141 

0 

0 

1 

0 
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c =[-1.2604 

-0.3705 

-1.2587 

0.3813 

0.0632 

0.0635 

W. Gawronski- H.G. Natke 

-0.0656] I 

0.0665 

The reasonable gap is observed between the secend and the 

third balancing coefficients 1 and so the system can be 

reduced 1 leaving the first two state variables in the 

balanced representation. The reduced model is then obtained 

by deleting the last two rows and columns in Ä1 the last two 

rows in B1 and the last two columns in C1 obtaining 

-0.0044 -0.298 

I Br =[-1.3131~ 
1.3152 

--[ -1.2604 
er 

-0.3705 

-1.2587 

0.2987 -0.0045 0.3813 

The reduction index is evaluated from (6.6) 1 obtaining ir~ 

0.0207. 

7. Balancing Vibrating Systems 

The balancing of vibrating systems was considered in 

/5 1 8 1 10/. The results of Gregory /8/ and of Jonckheere /10/ 

require further study. The Gregory balanced representation 

of the symmetric vibrating system is not sign-symmetric (a 
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balanced representation of the symmetric system is sign-

symmetric, as we have seen above). The Jonckheere model is 

derived from the property that the matrices A and B of the 

balanced system are in the form 

A=[a .. ], 
l.J 

where ai = +1 or -1, and li is the i-th balancing coeffi

cient. From this property the balanced representation can 

be determined only for a special choice of matrices A,B,C. 

Furthermore, the state space representation considered by 

Jonckheere does not represent the single-degrees-of-freedom 

(SDOF) vibrating system. Both developments consider the 

balancing of the separate modes. Generally, the system as a 

whole cannot be balanced in this way. 

7.1 Balancing a single-degree-of-freedom vibrating 

system. The system considered is given by the following 

representation 

(7 .1) 

where W is the natural frequency and ~ is the damping 
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coefficient. In particular, the system can be considered as 

a single vibrating mode of a multi-degree-of-freedom (MDOF) 

system. 

For simplicity of notation we denote two cases 

Case 1: ~ = c 2/c1 , with the notation c 1 = c 

Case 2: V = c 1/c2 , with the notation c 2 = c. 

In Case 1 i t is C = c [ 1 ~ 1 , in Case 2 C = c [ V 1 1 
holds true. 

Simple calculations shows /5/ that the transformed 

Hanke! matrix is, in Case 1 

H * = bc I ( 4 W 2 ~ ) [ 1.1 W 
1 l 

1 2 t- ~w 

( 7. 2) 

and in Case 2 

V 

] ( 7. 3) 

The eigenvalues a1 and a 2 (which are real) and the eigen

* vectors x1 , x2 of H give the balancing coefficients (li) 

and modes (ui, vi) 
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Fig.7.1.a. The balancing coefficients ll and 12 for 
small damping ( o<t < 0 .1) and ~ =0. 
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Fig.7.l.b. The balancing coefficients ll and l 2 for small 

damping (0<~<0.1) and ~ = 0.1. 
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Fig.7.1.c. The balancing coefficients l 1 and l 2 for small 
damping ( 0< ~<0 .1) and V =0. 
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Fig.7.2.a. The balancing coefficients ll and l 2 for larger 

damping (O.l,tH> and ~=0. 
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Fig.7.2.b. The balancing coefficients ll and y2 for !arger 
damping (0.1~~~1) and J.l =0.1. 
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Fig.7.2.c. The balancing coefficients lt and l 2 for !arger 

damping (O.l~t~l) and v=O. 
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1 1 
l 1 = la11'2, l 2= IIX212, u1 = v1 = x1 , u 2 = -v2 = x2 (7.4) 

and 

( 7. 5) 

The matrices r , L , U, V are as follows: 

l1 0 ,;.. u 

r = I:= u = [ u1 u2 1 , V = [ v1 v2 1 
0 l2 0 -1 

* Next we consider the eigenvalues of H for bc•l. If 

bcF1, the obtained eigenvalues for bc=1 should be multiplied 

by bc. The plots of 1 1 and 1 2 for different values of W, t , 
~ , and V are given in Figs. 7.1 and 7.2. Note that for 

ll = 0 only displacement is measured, and for V= 0 only 

velocity is measured (as we see later, for V= 0 we have 

Having determined the matrices r, U and L we obtain the 

transformation matrices R, R- 1 

6* r -1 R=~V U , -1 R = r r -1 (7.6) 
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as a symmetric systern version of (4.5). The balanced repre-

sentation is deterrnined frorn (2.7). 

The analytical forrnulas for the balanced representation 

are too cornplex to be worth deriving, so we consider expli-

citly only the case V= 0 (velocity rneasured only). Forthis 

* case the rnatrix H is 

1 0 

H* = l/(4W~) 

0 -1 

The eigenvalues and eigenvectors of this matrix are ~ 1 = -~ 

= ( 4 w ~) - 1 , u 1 = [ 1 0 ] , u2 = [ 0 1 ] therefore the balan

cing coefficients and rnodes are l 1 = l 2 = l = 1/(2~), 

U = I, [ = diag (1, -1) • 
2 

The transforrnation rnatrices are found frorn (7.6) 

R • [: 

1 

0 0 

and then frorn (2.7) we obtain the balanced realization 
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Ä = R-l A R = W [
-21 t -10 l 

c=CR=C[l o]. 

Example 7.1. The balancing of the SDOF vibrating system 

is considered with the following parameters: stiffness k = 

10, damping 1 = 0.1, mass m = 1, and ~ = 0. 

From these parameters we obtain the eigenfrequency W = 

Vk/m = 3.1623, and damping ratio = 1/2 W= 0.0158. From the 

singular value decomposition of H (which is given by (7.2)), 

we find 

ll = 1. 2674, l2 = 1.2475, r = diag(l, -1) 

and 

[ -o. 7237 -0.6902] 
u = 

-0.6902 0. 7237 

The balanced state space representation is given by the 

formulas (2.7) and (7.6), and the following results are 

obtained: 
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A 

= l-0.0492 3.16ll 
B = -0.3970 [: l· 

-3.1619 -0.0508 

c = [-o. 3976 1 -1] • 

7.2 Balancing multi-degree-of-freedom vibrating systems 

Here we consider a MDOF vibrating system represented by the 

state-space representation 

( 7. 7) 

where K, L, M are the stiffness, damping and mass matrices 

respectively of dimensions mxm, and m is the nurober of 

degrees of freedom of the system. The matrix A is nxn, where 

n = 2m, and B, C are nxp and qxn, where p is the nurober of 

inputs and q is the nurober of outputs. 

In order to obtain the balanced representation of the 

above system, the procedure given in Chapter 4 should be 

applied to the triple (A,B,C) given by (7.7). Balancing 

every mode separately does not guarantee that the whole 

system is being balanced. Also, the equations (7.7) in modal 

form do 
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not make the balancing procedure simpler. 

The following examples illustrate the balancing of 

non-syrnrnetric and syrnrnetric MDOF vibrating systems. 

Example 7.2. The balancing of the two-degree-of-freedom 

system is considered. The following data are available: the 

stiffness matrix 

K = [ 1000 -1000 I 
-1000 4000 

the mass matrix is unitary M = I, the damping matrix is 

proportional to K, L = 0.01 K, the matrix Cv is a zero

matrix, and the matrices B0 , Cq are 

For this system the balancing coefficients 

r = 0.1 diag(7.3916, 6.4801, 1.4200, 1.0611) 

and the balancing modes 
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-0.9424 0.3282 

-0.3296 -0.9438 

u = 0.0567 -0.0345 

0.0078 0.0213 

-0.8321 -0.2867 

-0.4415 -0.1622 

-0.2895 0.8298 

V 
-0.1593 0.4483 

= 

o·. 0556 0.0216 

0.0151 0.0310 

0.0027 -0.0181 

0.0114 -0.0111 

-0.0637 

0.0179 

-0.9805 

0.1851 

0.1904 

-0.3699 

-0.1080 

0.1537 

-0.4197 

0.7844 

0.0078 

-0.0135 

0.0124 

0.0197 

0.1851 

0.9825 

0.1314 

-0.2283 

0. 0714 

-0.1252 

0.0355 

-0.0673 

-0.4487 

0.8383 

W. Gawronski- H.G. Natke 

are determined, and the following balanced representation is 

obtained: 

-3.0355 -26.17.42 0.0495 -0.2089 -0.1821 

A 26.1882 -3.9503 0.0512 0.2356 
B 

0.1821 = = 

2.1862 -2.8496 -10.6834 62.8901 0.0656 

2.8485 -3.7073 -62.8901 -32.3313 0.0853 

c [-0.1651 -0.1575 0.0312 -0.0401 ] . = 
-0.0769 -0.0914 -0.0577 0.0753 
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Example 7.3. The two-degree-of-freedom system as in 

Example 7.2 is considered with the same parameters as 

before, except that C = [ 1 0 ] • This is a symmetric system 

(every single input, single-output system is symmetric). 

The following ba1ancing parameters are obtained: 

r = 0.01 diag(6.0781, 5.3358, 0.5968, 0.4661) 

u = 

-0.9422 

-0.3308 

0.3292 

-0.9432 

0.0523 -0.0388 

0.0104 0.0215 

-0.0618 

0.0211 

-0.9947 

0.0793 

-0.0076 

-0.0221 

-0.0795 

-0.9966 

V = ur I and r = diag(1, -1, 1, -1). The following 

ba1anced representation obtained is sign-symmetric 

A = 

-2.9389 

26.2542 

0.8987 

-1.5699 

c = [ -0.1474 

-26.2542 -0.8987 

-4.0013 -1.1683 

-1.1683 -6.9897 

2.1150 63.6133 

-0.1509 -0.0223 

-1.5699 

-2.1150 

-63.6133 

-36.0702 

-0.03961 • 

ä = 

-0.1474 

0.1509 

0.0223 

-0.0396 
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7.3 The reduction of vibrating systems via balancing. 

Here we show the application of the system balancing to the 

model reduction, according to the explanation given in 

Chapter 6. This is shown in two examples. 

Example 7.4. Let us consider the possibility of reducing 

the SDOF vibrating system with b=c=l, t = 1, ~ = w·1• 

* Its matrix H is obtained from (7.2) 

and has the following eigenvalues and 

IX1 
-2 

IX2 0, 0. 7071 [ 1 = o.sw' = x1 = 

x2 = 0.7071 [ 1 -1 ] • The balancing 

are obtained from (7.4) 

r = -1 diag(0.7071 W , 0) ' 

eigenvectors: 

1 ] ' 

coefficients 

V = U = 0 • 7 0 71 [ : -: l· r • diag (1, 1). 

and modes 



www.manaraa.com

Balanced Representation 159 

Since y2 = 0, the second variable in the balanced represen

tation can be reduced. Moreover, it follows from (6.6) that 

the reduction index is 0, i.e. the reduction error is zero. 

It is easy to see that the reduced system has the 
1 

representation Ar = - w I Br = er w2 • 

The plots in Fig. 7.3. show the dependence of the 

reduction index ir (in this case i = y2/ (ll +J2)) on W and t , 

for ~ = 0.05. From the plots one can see the possibility of 

reduction without considerable errors for tclose to 1, and 

natural frequency close to 20 (i.e. for W close to ~- 1 ). 

Exam121e 7.5. Reduction of the MDOF system. The system 

is shown in Fig. 7.4. In this figure m1 = m2 = 1, k1 = k2 

= 1, 1. 
~ 

= 0.0346 ki, i = 1.2. Its state representation is 

0 0 1 0 0 

0 0 0 1 0 
A = , B = , c = r 1 0 0 0 1. 

-2 1 -0.0693 0.0346 1 

1 -1 0.0346 -0.0346 0 

For this system the balancing coefficients are obtained 

r = diag(4.1352, 4.0911, 1.5922, 1.5483). 
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,------------

o. 

o. ---ZETAaO.t 
---·-UTA:0.3 
-··-·· ZETAaO.S 

0·1 -···-· ZETA:0.7 
-·-··- lETA:O.I 
-·····-lETA:t.O 

o.o •o 10 10 100 

o.e 

o .• 

o. 

---UTRa0-8 
-·-·-ZETA:O.I 

0.1 -··-·· ZETAa0.95 
-·---· ZETA:O.IB 
-····- ZETA:O.II 
-·····-lETAat.O 

o.o 10 100 

Fig.7.3.a. The reduction index for the SDOF vibrating 

system. 
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---ZE11bJ.OO 
---·-ZUII:J.OI 
--·-·· ZETIIai.OZ 

o. -···-·ZETA•I·OS 
--···- UTII:I.JD 
-·····-UTII:J.%0 

.. 

••• 

••• 

---ZflAol-0 
-----ZHA:1.2 
-·--··H111:1.• 

0.1 -···-· Z[~A•I·I 
-····- UlA:I.II 
-····--lt~A:2-0 

••• 

-CA 

IQ 

Fiq.7.3.b. The reduction index for the SDOF vibratinq 

system. 

161 
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u 

<z 

y2 

Fig.7.4. MDOF system considered in Example 7.5. 

Obviously, the matrix shows no significant gap between the 

balancing coefficients, therefore the reduction of the 

system is not recommended. 

Now consider the situation when the stiffness k2 is 

!arger than before, namely.k 2 = 100, and let the remaining 

parameters be as previously. The system triple (A,B,C) is 

now as follows: 
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0 0 1 0 

A 
0 0 0 1 

= 

-101 100 - 3.4946 3.4600 

100 -100 3.4600 -3.4600 

B, C as before. For this system we obtained the fo11owing 

ba1ancing coefficients 

r = diag(4.5455, 4.4903, 0.0570, 0.0448) 

and the ba1anced representation 

-0.0085 -0.7062 0.0038 0.0038 -0.5935 

Ä 0.7062 -0.0087 0.0038 0.0039 ä 0.5934 
= = 

0.0038 -0.0038 -2.6279 -13.7542 0.1308 

-('1.0038 0.0039 13.7542 -4.3095 -0.1315 

c = [ -o. 5935 -0.5934 0.1308 0.1315] 0 

The matrix r now shows a sp1it between the balancing 

coefficients, namely l 2 >> l 3 , therefore the last two state 

variables can be reduced. The new, reduced representation is 

as follows: 
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-- [-0.0085 
Är 

0.7062 

-o. 7062] ' 

-0.0087 

= [-0.5935], 

0.5934 

er = [-0.5935 -0.5934 1. 

The reduction index is ir ~ 0.0113, i.e. the impulse re

sponse of the reduced system differs from the impulse re-

sponse of the original system by about 1 %. It is easy to 

see that the reduced representation is close to the balanced 

representation of the SDOF vibrating system with the follow

ing parameters: m = 2, k = 1, 1 = 0.0346. The latter system 

is obtained from the system in Fig. 7.4 by setting k 2--.., 

and it has the following balanced representation (Ä1,ä1 ,c1): 

r-0.0085 -0.7070 

J 

-[-0.5946] 
Äl = Bl 

0.7070 -0.0088 0.5946 

Cl = [ -0.5946 -0.5946 1 • 
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8. Order deterrnination of the AR and ARMA rnodels /4/ 

Here we consider an auto-regressive (AR) rnodel of 

order p, as well as an auto-regressive-rnoving-average (ARMA) 

rnodel of order (p, q) where p ~ q. The AR rnodel is described 

by the equation 

Yi = -al Yi-1- a2 Yi-2- ••• - ap Yi-p + b1 ui-1 + vi 

the ARMA rnodel is given by 

- a y. + p 1-p 

+ ••• + 

( 8 .1) 

( 8. 2) 

and yi is the rneasured output, ui is the rneasured input, vi 

is the noise corrupting the output. We assurne that the noise 

is uncorrelated with the input. 

It is easy to check that AR(p) = ARMA(p,1). ~urther we 

consider the ARMA(p,p) rnodel only, which we denote ARMA(p) 

for sirnplicity. If q < p, we set b = 0 for q < i ~ p. This 

assurnption gives the order of the ARMA rnodel dependent on 

one pararneter only, narnely p. 
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The method of evaluating the order of the identified 

system consists of the following stages: 

1. The determination of the state space representation of 

the ARMA model. 

2. The transformation of the state variables to the balanced 

coordinates. 

3. The evaluation of the usefulness of each balanced state 

variable from the point of view of its reachability and 

observability, and possible reduction of the system 

order. 

4. Return from the reduced balanced coordinates to the new 

reduced ARMA model. 

The state space representation for the ARMA model is des

cribed in /7,13/, and is given by the equation (3.17), 

where 

A = 

0 

0 

1 

0 

0 

1 

0 

0 

.................................. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
-a p -a p-1 -ap-2 •••• 

( 8. 3) 
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c = [ 1 

A -1 
B = B0 

and 

B = 0 

A= 

[ b1 

1 

a1 

a2 

a p-1 

0 

b2 

0 • • • • 0 1 , 

•••• bp 1 

0 

1 

a1 

a p-2 

, 

0 

0 

1 

a p-3 

0 

0 

0 

167 

(8.4) 

(8.5) 

( 8. 6) 

( 8. 7) 

The extended reachabi1ity and abservabi1ity matrices for 

this system are defined by (3.31). The system Hanke1 matrix 

is defined as 

H = rJ (N) e (N) • ( 8. 8) 

The ba1anced representation is obtained by the singular 

va1ue decomposition of the Hanke1 matrix, which is as 

fo11ows: 
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H = ( 8. 9) 

and the transforrnation rnatrices to the balanced represen-

tation are 

R = e (N) u r -l -1 
R = [ r -1 UT O"(N). (8.10) 

If for sorne nurober p0 < p we have a gap within the balan

cing coefficient row, i.e. l Po > > l Po+1 , then the state 

variables x. in the balanced representation can be reduced 
~ 

for i = p0 +1, ••• ,p. 

For the rest of this chapter, instead of the reduction 

index ir' see (6.3) and (6.6), we use the logarithrnic index 

rl 

= (8.11) 

Exarnple 8.1. In this exarnple we test how the order of 

extension N influences the balancing coefficients. Let the 

ARMA(2) rnodel be given 

+ 0.3 y. 2 
~-

+ u. 1 
~-

+2.7u. 2 ~-
+ v. 

~ 

It has the state space representation (A,B,C) as fo11ows: 
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c = [ 1 0 1 • 

The balanced representation is determined for the extension 

nurober N=6. The extended reachabi1ity and observability 

matrices are 

t ( 6) ·['·0000 1.7000 -0.5500 0.7850 0.5143 0.5143] 
1.7000 -0.5500 0.7850 -0.5575 0.5143 -0.4244 

O T ( 6 ) ~[ 1.0000 0.0000 0.3000 -0.1500 0.1650 -0.12751 
0.0000 1. 0000 -0.5000 0.5500 -0.4250 0.3775 

therefore the symmetric Hankel matrix is obtained (only its 

lower part is shown) 

1.0000 

1.7000 -0.5500 

H -0.5500 0.7850 -0.5575 = 

0.7850 -0.5575 0. 5143 -0.4244 

-0.5575 0.5143 -0.4244 0.3665 -0.3105 

0.5143 -0.4244 0.3665 -0.3105 0.2652 -0.2258 
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The singular value decomposition of H gives the following 

balancing matrices: 

r = diag(1.8000, 1.4736) 1 r = diag(-1, 1) 

u =[-0.4281 0.5731 -0.4150 0.3794 -0.3142 0.2709} 
-0.8567 -0.4866 -0.0137 -0.1391 0.0654 -0.0745 

The transformation matrices are obtained 

R = [ 0. 7705 

-1.0316 

-1.2642], 

-0.7170 

R- 1 = [ 0.3866 

-0.5562 

-0.6806], 

-0.4154 

and the balanced representation is as follows: 

A = [-0. 9072 

0.2635 

-0.2635] 

-0.7170 

B = [-0.7705]' 

-1.2624 

c = [ o. 7705 -1.2625 1 • 

The plot in Fig. 8.1 shows the dependence of the balancing 

coefficients on the extension nurober N. The balancing coef-

ficients and the balanced representation for the infinite 
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interval balancing (N-oo) are 

r = diag(1.952, 1.4818) 

A = [-0.8965 

0.2355 

-0.2355] , 

0.3965 

c = [ o. 7977 -1.2792 1. 

lt,l2 

1.8 

1.6 

1.1. 

1.2 

171 

B = [ -0.7977 1 
-1.2792 

Fig. 8 .1. Dependance of the balancing coefficients on the 
extension nurober N. 
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Example 8.2. Given the AR(4) model 

y1. = 0.8 y. 1 - o.s y. 2 - 0.3 y. 3 + 0.3 y. 4 + u. 1 + v. 1- 1- 1- 1- 1- 1 

where v. is non-measurable noise. The system is identified 
1 

from the measured data yi, ui, i=1, ••• ,4000, for the dif-

ferent noise 1evel cr v· We assume that the system order is 

not known, therefore the systems of order from p=2 to 7 are 

identified. The logarithmic reduction index r 1 is determined 

for the order of extension N=SO. Fig. 8.2 shows the loga-

rithmic reduction index for the different noise levels. The 

jump in the values of r 1 for p=S indicates that the system 

order is 4. 

Fig.8.2. 

2 3 5 6 ORDER 

Logarithmic reduction index for the different 

noise levels. 
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Example 8.3. The ARMA(4) model is given 

y. = y. 1 - 0.8 y. 2 + y. 3 - 0.2 y. 4 1 1- 1- 1- 1-

+ U. 1 + 0.7 U. 2 - 0.4 U. 3 - 0.1 u. 4 +V~ 1- 1- 1- 1- ~ 

and similarly, as in Example 8.2, the data yi, ui for 

i=1, ••• ,4000 are available for the system identification. 

The process vi is non-measurable noise with the standard 

deviation cr v· The systems with order 2 to 7 are identi-

fied, and for each identified system the reduction index is 

determined for the extension order N=SO. The plots of r for 

the different noise levels are shown in Fig. 8.3. The figure 

indicates that the appropriate order of the ARMA model is 4. 

Fig.8.3. 

3 

2 

3 4 

,..._ ay=0.001 
I -< I ....__ 

!!-·~· 
I. ~~-
~.'/ ~ 

5 6 ORDER 

Logarithmic reduction index for the different 
noise levels. 
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Finally, qiven the reduced balanced state space repre

sentation and its reachability and observabiliy matrices, 

the ARMA model which relates to this representation should 

be determined. 

From /4/ we have 

Ot H (p) = - ß (8.12) 

where Ot is the row-vector of AR coefficients 

(8.13) 

H(p0 ) is the Hankel matrix of order p0 , and ß is the last 

row of the Hanke! matrix H(p0 +1), of order p+l. TheMA 

coefficients form the first column of H(p0 +1). 

9. Transfer function realization and identification 

procedure 

The procedure for determining the state space reali

zation (A,B,C) from the finite set of Markov parameters 

(defined below, cf. (9.3) is presented. This procedure was 
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developed in /6 /. 

Here we consider both continuous-time and discrete-time 

linear systems. Let (n and an be the controllability (reach

ability in the discrete-time case) and observability matri-

ces of order n 

[ n-1 ] "" = B AB ••• A B I u n 

and H1 be its Hankel matrix of order n ,n 

H = 1 ,n 

where 

are Markov matrices, p xq. Note that 

H = a t 1,n n n 

(9 .1) 

( 9. 2) 

( 9. 3) 

(9.4) 
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Let Hk be the "shifted" Hanke! matrix ,n 

H = k,n 

then 

h n+k-1 hn+k ·••• h2n+k-2 

H = D' Ak- 1 t • 
k,n n n 

( 9. 5) 

( 9. 6) 

Next, we assume that H1 is of rank m, and that the rank of ,n 
H1 ,n+ 1 is also m. Since the matrices H1 ,n and H1 ,n+1 are 

obtained from measurement data, it can be difficult to 

determine n that fulfills this demand. This question is 

considered later. 

Since H is of rank m, it can be decomposed as 1 ,n 

follows: 

. 
H = p Q 

1 ,n ( 9. 7) 
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where P and 0 are full rank matrices pn x m and m x qn, m~ 

pn, m ~ qn, rkP = rkO = m. The pseudoinverse of H1 is ,n 
reflexive, therefore from (9.7) it follows that 

(9. 8) 

where P+, 0+ are pseudoinverses of P, o, such that P+P = I, 

00+ = I. 

In /6/ one can find that 

A = p+ H 0+ 2,n (9.9) 

B = 0 E q (9.10) 

c = ET p p (9.11) 

where Eq = [ ~ 0 •.• o). These formulae show that (A,B,C) is 

fully determined from the Markov parameters. 

The realization (A,B,C) depends on the decomposition 

(9.7) of the Hankel matrix. In particular, one can apply the 

singular value decomposition, or Cholesky, LU, OR decompo

sition, if H1 is nonsingular. ,n 
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Consider the case of the.singular value decomposition 

of the Hankel matrix, which we denote as follows: 

H = V ra UT 
1,n o o o 

(9 .12) 

where V0 , U0 are unitary matrices, and r0 is a diagonal 

positive definite matrix. Comparing the above equation with 

(9.7) we find 

P = V r Q = r0 UT0 0 0 I 
P+ = r - 1 vT o+ = u r- 1 

o o' o o • (9.13) 

Finally, consider a symmetric system. A system is 

symmetric if its transfer function matrix is symmetric, or 

its Hankel matrix is symmetric (in this case, of course, 

p=q) • For the symmetric system 

(9.14) 

and for this 'case the equations (9.9) - (9.11) are 

A = p+ H 2 ,n 
(P+) T r (9.15) 

B = r PT Ep = r PT 
p (9.16) 

c = ETP 
p = PP (9.17) 
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where P are the first p rows of P, L as above. p 

It is valid to abserve that the system defined by 

(9.15) - (9.17) is sign-symmetric, since from these equa

tions it follows that 

179 

A r = r B 
T = r c . (9.18) 

Example 9.1. A continuous-time system with the fol-

1owing Markov parameters h1 = 0, h 2 = 1, h3 = -3.03, 

h4 = -82.919, h5 = 1102.7, h6 = 9923, h7 = -280780, and 

h8 = -300660 is examined. Since the order of the system 

under investigation is not known a priori, we assume it to 

be maximally obtainable from 8 Markov parameters, that is 

p=4. 

Thematrices H1 , 4 and H2 , 4 , according tp (9.2), (9.5) 

are as follows: 

o.oooo 1.0000 

1.0000 -3.0300 

H = 
1,4 -3.0300 -82.8190 

-82.8190 1102.7 

-3.0300 

-82.8190 

1102.7 

9923.0 

-82.8190 

1102.7 

9923.0 

-280780 
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1.0000 -3.0300 -82.8190 1102.7 

-3.0300 -82.8190 1102.7 9923.0 

H2,4 = -82.8190 1102.7 9923.0 -280780 

1102.7 9923.0 -280780 -300660 

The singular value decomposition of H1 , 4 is in the form 

(9 .12) , with 

ro = diag(530.2170, 38.1170, 0.6956, 0.7114) 

-0.0003 0. 0041 0. 7150 0.6992 

u 
0 

= 0.0039 0.0303 0.6988 -o. 7147 

0.0351 -0.9989 0.0240 -0.0187 

-0.9994 -0.0350 0.0034 -0.0037 

and V0 = u0 E 1 With r = diag(-1 1 1, 1, -1) 0 

The fol1owing realization is obtained from (9.15) to (9.17) 

A = 

0.9982 -14.4051 

14.4051 

0.1056 

0.0829 

-7.0132 

0.0514 

-0.0404 

0.1056 

0.0514 

0.2440 

0.7501 

0.0829 

0.0404 

-0.7051 

-0.2591 
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BT = ( 0.1559 0.1563 0.4973 -0.4974 1 , 

c = [-0.1559 0.1563 0.4973 0.49741 • 

When the realization (A,B,C) is determined, the question 

arises if it is minimal. This question can be answered on 

the basis of the system balancing theory, and is illustrated 

in the following example. 

Example 9.2. The realization obtained in Example 9.1 is 

considered and the possibility of its reduction via system 

balancing is checked. 

The balancing coefficients for this system are 

r = diag(4.8875, 4.8363, 0.0594, 0.0482) 

and its balanced representation is 

A = 

-0.0074 

0.7062 

0.0032 

-0.0033 

-0.7062 

-0.0075 

-0.0033 

0.0033 

0.0032 

0.0033 

-2.3257 

13.8542 

0.0033 

0.0033 

-13.8542 

-3.6894 
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-T ( B = -0.5935 0.5929 0.1282 -0.13091 

c = [-0.5935 -0.5929 0.1282 0.1309] 

In the rnatrix f we have l 2»l3 , so that the systern can be 

reduced to n=2 state variables by deleting the last two 

state variables in the balanced representation. In this way 

the upper left block of Ä, as well as the upper block of B, 

and the left block of C represent the reduced realization of 

the systern 

[ -0.0074 -0.7062] 
Ä = r 0.7062 -0.0075 

er = -0.5935 -0.5929] 

According to (6.6) the reduction error 

ä [ -0.5935]. = r 0.5929 

is i ~ 0.0111. 
r 

Since the Markov pararneters were taken frorn the systern 

in Fig. 7.4, for k2 = 100, the reduced realization is almest 

identical with the reduced one frorn Exarnple 7.4. 

For the discrete-tirne systerns the Markov pararneter hi 

has the useful physical interpretation - it is the irnpulse 



www.manaraa.com

Balanced Representation 183 

response at time istant ti = i 6 t, where 6 t is the samp

ling interval. Therefore, the discrete time system the above 

procedure has an additional interpretation - it is an 

identification procedure. Given the impulse response, the 

realization (A,B,C) is determined. This particular approach, 

developed independently in /6/, is presented in /11,12/. 

10. Conclusions 

The determination of the balanced representation allows 

one to evaluate every state variable from the point of view 

of its controllability (reachability) and observability. 

This, in turn, gives one the possibility of reducing the 

variables which are weakly controlled and observed. The 

applications have shown that the balancing method is useful 

in the determination of the order of different linear 

models. 
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Appendix. Solution of the Lyapunov Equation 

This problern is presented in /3/. 

Al. Continuous-time case. Consider the matrix A, 

n X n, with the distinct eigenvalues X 1, ••. , xn and the 

matrix B, n x p. Define also the following matrices 

[ n-1 ] t = B AB ••• A B (A.l) 

(A. 2) 

where ®denotes the Kronecker product, and p is the unit 

matrix of order p: further 

Q(t) = v- 1 D(t) v-T (A. 3) 

and 
\ n-1 

• • • • • 1\ 1 

(A. 4) 

V= 
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With 

D(t) = [d .. (t)] I 
l.J 

i,j=1, ••• ,n 

1 
d .. ( t) = 

l.J 
Ai+ Aj 

this notation we 

Theorem A.1. 

t 

wc (t) = I 
0 

The 

(Ai+Aj) t 
(e - 1) 

prove 

grammian 

is determined from the formula 

or 

where 

w (t) c 

Proof. From the Cayley-Hamilton theorem we know 

eAt B = ( B AB ••• An- 1 B ] (a (t) ® p 

a (t) = [ a0 (t) a 1 (t) ••• an_ 1 (t) ) T. 

185 

(A. 5) 

(A. 6) 

(A. 7) 

(A. 8) 

(A. 9) 
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The coefficient vector a(t) is determined frorn 

a(t) = v-1 f(t) (A.10) 

where V is given by (A.4), and 

Using (A.1) and (A.10) we write (A.9) as 

eAt B = t (V- 1 f (t) ® ~) • (A.ll) 

Now, putting the above to the definition of grarnrnian (A.7) 

we find 

t 

wc (t) =I e (v- 1 f (T) 

0 

t 

=e f v-1 f (T) fT (T) v-T ® 1-e1 dT = e (v-1 o (t) v-T ® I)tT 
p p 

0 

where t 

D(t) =/ f (T) fT ('t') dT 

0 
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and the ij-th element of D(t) is 

0 

Corollary A.l. With C being a p x n matrix, the follow

ing grammian 

t 

=I (A.l2) 

0 

is determined from 

(A.l3) 

with 

(A.l4) 

Corollary A.2. With the matrices A,B,C is above, and 

with the real parts of the eigenvalues of A being negative, 

the solutions of the following Lyapunov equations 

A W c + w c (A.lS) 

(A.l6) 
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are given by 

with 

V as above, and 

D = (d .. ] , i,j=1, ••• ,n, 
l.J 

d .. = 
l.J 

W. Gawronski- H.G. Natke 

(A.17) 

(A. 18) 

(A.19) 

1 

(A.20) 

}.. +}... 
i J 

Example A.1. For the following A and B 

8 =[ : ] 

it is possible to determine the solution of the Lyapunov 

equation (A.15). 
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The matrix A has the following eigenvalues: X1 = -1, 

X2 = -2. Since p=1, 00 =0 and 0 = v-1 D V-T, where 

1 x1 1 -1 

V = = D 

1 -2 

From these data we obtain 

= [
0.9167 o = v-1 o v-T 
0.2500 

= 

1 1 
2Ä1 ~·~ 
_1_ ...!.. 
x1+x2 2~ 

0. 2500 ] • 

0.0833 

Next, the matrix ( is determined 

e = [ s AB]=[1 0] 
0 -2 

therefore, from (A.17) we find 

w c = t! 00 e T = [ o • 916 7 

-0.5000 

-0.5000] 

0.3333 

0.5000 0.3333 

= 

0.3333 0.2500 

A2. Discrete time case. Consider the matrix A, nxn, 

with distinct eigenvalues x1 ••• ,xn together with the matrix 

B, nxp. Let us also define the fol1owing matrices 
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Q(N) = v-1 D(N) V-T 

where V is given by (A.4) and 

D(N) = [ dij (N) ] , i,j=1, ••• , n 

dij (N) = 

N ( X·X·) -1 I I 

X· X·-1 
I J 

Wtth the above notation we prove: 

Theorem A.2. The grammian 

N 

wc (N) = L AiBBT (Ai) T 

i=o 

is determined f~om the formu1a 

where t is given by (A.1). 

Proof can be found in /3/. 

W. Gawronski- H.G. Natke 

(A. 21) 

(A. 22) 

(A. 23) 

(A.24) 

(A. 25) 

(A. 26) 
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Corollary A.3. With C being a p x n matrix, the 

following grammian 

N 

w (N) = L (Ai) T CT c Ai 
0 

i=o 

is determined from 

with a given by (A.14). 

191 

(A. 27) 

(A. 28) 

Corollary A.4. With matrices A,B,C as above, and A 

having its eigenvalues within the unitary circle, the 

solutions of the following Lyapunov equations 

A w AT - w - B BT c c (A. 29) 

AT w A - w = - CT C 
0 0 

(A. 30) 

are given by 

w = to tT 
c 0 

(A. 31) 

w = O'T Q CI 
0 0 

(A. 32) 
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with 

where V is as above, and 

D = [dij], i,j=1, ••• ,n, 

W. Gawronski- H.G. Natke 

1-~· ~· 
I J 

(A. 33) 

(A.34) 

Example A.2. The discrete Lyapunov equation (A.29) is 

considered, with 

The matrix A has the eigenvalues ~1 = 0.5, ~ 2 = -0.8. Since 

p=1, 00 = 0, and 0 = v-1 D V-T, where 

=[1 \]-[1 0.5] 
V 

1 ~2 1 -0.8 

_J_ 1 

1- ~~ 1- ~1~2 
1.3333 0."1143 

D = = 
1 1-1~~ 1- ~1 ~2 0. 7143 2. 7778 
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so that we obtain 

O = V-1 D V-T =r 1.2539 

l-o.3175 

-0.3175] 

1.5871 

For the above data the matrix t is 

( = (B AB) = [O 1 ] 
1 -0.3 

and from (A.31) we obtain the solution 

W c = t Oo ( T = [ 1. 58 7 2 

-0.7936 
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NON-LINEARITY IN DYNAMICAL SYSTEMS 

G.R. TOlllUDioD 
Herlot-Watt UDIYenltJ, Rkcartoa, EdlaburJb, U.K. 

PART 1. A REVIEW OF DETECTION METHODS IN MODAL . TESTING 

As a starting point it is worthwhile presenting a global view of the 

significance of non-linearity and the manner in which this is considered 

in relation to modal testing and analysis. Figures la and lb show why 

non-linearity is important and how modal testing inter-relates with non-

linearity. SIGNIFICANCE !J' NONUNEARITY II lollDAL ANALYSI~ 

• 5U'EIIPOSITION IlDES NOT HOLD, MODAL 
PMAMETERS DEPENDENT 11'111 ElCCITATION Iom!. 

• RECIPROCITY MAY NOT APPI.Y, MODAL PMAMEI!RS 
DEPENDENT 11'111 ElCITATION ~ 

• FREQUENCY AESPONSE FIJICTIONS I FRF 'al 
DEPENlENT 11'111 FllRM !J'lHE ~-

• FRF's DIFFICUI.T 10 aJIIYE·FIT 

e DFFICW' 10 OSTAll Y.!l, I'IMAMETERS 

e NOtUIEAII !!QDE !NTE!!ACT!ON 

e DFFIQJI.T 10 COIIIELATE FE A!S!&!S 
WITH I!OQAL !EST OATA. 

FIGURE la 

FIGURE lb 
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The role of the type of excitation obviously plays an important part in 

1 
the study of non-linear structures and thus a distinction is drawn bet-

ween the methods which employ sinusoidal, random and impact excitation. 

1.1 Superposition and Linearity 

Linearity is defined by the principle of superposition. It is not 

dependent upon the form of the input excitation. Superposition is simply 

stated mathematically as: 

(1) 

(2) 

However, if this procedure is employed one must check that equation (2) 

holds for all response and excitation points which makes this a time con-

suming process. In addition, no obvious identification process can be 

linked to this approach. An application of this procedure is shown in 

Figure 2. The total power input from one or more exciters is used to mon-

itor the variation in the resonant frequency of individual modes of vibra-

tion of an aircraft. When no variation is evident in the frequency/damp-

ing curve with increasing input power then the system is considered lin-

earised. 
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1.2 Nyquist plot distortions}frequency isochrones employing sine excita-

tions. 

One of the earliest techniques for detecting nonlinearity during 

2 3 modal testing employed the distortions of the Nyquist plot.' If one 

considers the response of a mode of a single input/single output (SISO) 

system with a nonlinearity (either damping or stiffness) one can show, 

using a linearisation procedure such as the method of barmenie balance or 

. '1 4•5 h 1 . h . 1 d h . s1~ ar that t e response ocus 1n t e Nyqu1st p ane ue to a armon1c 

force input is distorted. This method of analysis is justified since in 

general the response of the nonlinear system is filtered, leaving only the 

response due to the fundamental harmonic. The cause of the distortion is 

evident from the fact that the linearised equation, represented in terms 

of its real and imaginary parts can no lon~r be represented as the equa-

tion of a circle. Consider the equation, 

(3) 

where f(x,x) are non-linear restering forces of displacement and velocity. 

Assuming x(t) .. Asinwt one can show that the complex displacement am-

3 
plitude is of the form, 

(4) 

where Aa•Ar .. f(A,A2 ••• An), i.e. the real and imaginary parts are non

linear functions of the response. 
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In addition to the distortion of the normally circular vector locus 

for linear systems, the lines joining points of constant frequency for 

different excitation levels (isochrones) become distorted in a manner de-

pendent upon the type of the nonlinearity. These are more sensitive to 

distortion than the actual vector locus and the pattern of these may be a 

better method of detection/identification than the actual shape of the dia-

gram. Figure 3 gives some examples of Nyquist plot distortions. Tech-

niques for identifying the coefficients of the nonlinear systems based 

upon the vector plots have been suggested although one must make the a-

priori assumption about the form of the nonlinearity. 

The principal limitations of the above methods are that the modes of 

vibration must be isolated, a constant excitation force within the resonant 

region must be employed and the nonlinearity must be simple. 

FIGURE 3: 

NYQUIST PLOT 
DISTORTIONS 

1.3 Damping distortion 

l.locA!l 

__ .._... 

*·** 
• I• R $I• R1 $At l.. ~ .. 

CONSTAH 
FREQUENCY LIN ES 
IISOOtAONESI 

Reference 6 shows that for a single mode system the damping can be 

calculated from the formula, 

c5 
r 

w 
r 

2 
1 

ea/2 + tan 6b/2 ] ·eS = 2l; lw=w 
' r r r 

(5) 
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By utilising several points both before and after the resonance point on 

the Nyquist plot one can produce a three-dimensional carpet plot, which 1 

for a linear system is flat. However, in the case of a nonlinear system 

this becomes distorted. Figure 4 shows an example of this method. This 

procedure is basically an extension of the Nyquist distortion method de-

scribed above since it is the phase distortion (variation in the iso-

chrones) which is the sensitive factor. This procedure is easy to im-

plement but has the same limitations as the previous method in that only 

isolated modes of vibration can successfully be treated. 

Im 

FIGURE 4: 

CARPET PLOT DISTORTION 

1.4 The "sig-ftmction" 

This procedure basically employs the time data to detect and char

acterise nonlinearity. 7 This approach utilises the energy present in 

sub or post harmonics arising from nonlinearities. The '\lig-ftmction" is 

defined for a sinusoidal excitation as, 

sigf(w) (6) 

where xx original (tmfiltered) output time signal 

ftmd ftmdamental (filtered) time signal 
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Figure 5 shows an application of this method. This technique has not yet 

been applied to multi-mode systems and thus it is difficult to comment 

on its usefulness for general modal testing. However, it does not offer 

any means of linearisation, which has been a major limitation of all the 

techniques described so far, and it may be somewhat susceptible to noise 

on the response or input signals. 

FIGURE 5: 

SIG FUNCTION FOR A 
CUBIC STIFFNESS NON
LINEAR SYSTEM. 

1.5 The Hilbert Transform 

a•.a 111.1 aza.t,.. .. &IRe9 CHz> 

The Hilbert transform relies upon the properties of causal functions. 

All physically realisable systems, linear or non-linear, are causal which 

means that the impulse response of a frequency response function (FRF) 

will satisfy the condition, 

g(t) .. 0, t < 0 (7) 

where g(t) is due to 6(t) at t-o 

A consequence of this is that there is a unique relationship between the 

odd and even parts of a causal time function i.e., 

g(t) g(t) even + g(t) odd (8) 
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where, 

and, 

g{t) even • g(t) odd x sgn(t) 

g{t) odd = g(t) even x sgn(t) 

sgn(t) • +1, t > 0 

= -1, t < 0 

G.R. Tomlinson 

(9) 

(10) 

(11) 

Assuming that the Fourier transform of g(t) exists, equations (9) and (10) 

can be written as, 

jö{g(t) even} = R G(w) ~g(t) odd x sgn(t)} 
e 

'{g(t) odd} • il G(wl =~g(t) even x sgn{t)} 
m 

(12) 

(13) 

Equations (12) and (13) show that the real part of the frequency response 

function can be obtained from the imaginary part and vice versa. These 

are usually written as, 

H{R G(w)} =I G(w) 
e m 

H{I G(w)} = R G(w) 
m e 

where H {"} represents the Hilbert transform. 

Thus for a linear system, 

(14) 

(15) 
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H (w) = G (w) (16) 

When non-linearity is present in the response of a structure, the inverse 

Fourier transform of the measured frequency response function is found 
8 

to be significantly non-causal and as a result of equations (12) and (13) • 

one finds, 

H (w) ;. G (w) (17) 

Equations (16) and ( 17) are explained graphically in Figure 6a. The method 

of obtaining Hilbert transforms described above is based on the time 

domain procedure. However, the formal Hilbert transform is an integral 

9 
transform 

H(w ) = -
c 

1 
i'll' 

PV_~ G(w)dw 
&> w-w 

c 
(18) 

where PV • Principal value of the integral. 

This can be expressed in terms of the real and imaginary parts of G(w) 

and calculated numerically. Figure 6b shows how the Hilbert transform can 

be obtained via time and frequency domain procedures. Details of these 

can be found in references 10, 11. Figures 7a and 7b show how .the Hilbert 

transform detects non-linearity, resulting in the condition for a non-

linear system H(w) ;. G(w). 
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I G(w) I 
(S) 

I G(w) I 
(S) 

7(a) 

!MAG 

DATA 

(E) 

(E) 
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·1.6 The use of power spectra 

The principal techniques currently employed, and in the process of 

development, for the detection and identification of nonlinearity when 

random excitation is used in conjunction with power spectra are discussed 

in this section. 

Optimum Frequency Response Function (FRF) 

It has been shown12 that in the presence of nonlinearity which af-

fects only the output response of a SISO system, the optimum method of 

obtaining a linearised FRF (linearised in the sense that it corresponds 

to the best least-squares model of the linear system for a given rms ex-

citation level) is the classical H1(w) function, 

Syx 

Sxx 

Y(w)X(w) 

X*(w)X(w) 

Syx • averaged cross spectrum of the output and input 

Sxx averaged auto power spectrum of the input 

* .. conjugate 

(19) 

In equation (19) the input power spectrum may be polluted by non-

linearity arising from the vibration exciter which provides a feedback 

path. 12 This can be minimised by modifying equation (19) to, 

~I Svv 

Sxv 
Svv 

(20) 

where Syv • averaged cross spectrum between the output and valtage to the 
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oscillator 

Sxv s averaged cross spectrum between the force input to the struc-

ture and the voltage to the oscillator 

Svv auto power spectrum of the voltage to the oscillator 

Figure 8 shows the result of applying H1 (w) at two very different excita

tion levels. It can be seen that the FRF's can be curve-fitted success-

fully using a standard algorithm. Characterisation of nonlinearity pro-

ceeds with monitaring the variation of the extracted modal parameters 

with rms excitation level. It should also be noted that the use of the 

coherence function is not always a good detector of nonlinearity. This 

is because the inability to separate leakage and nonlinearity is often 

difficult and nonlinearities may be phase-coherent when periodic random 

is used. 

-• FIGURE 8: G .. 
(a) H1 (w) AT A HIGH 

EXCITATION LEVEL 
t 

(b) H(III)ATALOW 
1EXCITATION LEVEL 

... 
NOTE CHANGE IN FREQUENCY S 
AND SHAPE • 

•••• DATA t 
-- CURVE-FIT 

7 (a) 
4 
I 

-a 
-5 -· -II 

-14 
-17 
-21 • 

-4 
-7 

-··.~--~~--~~--~~--~~~~ 
..... 111 
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The above procedures cannot be used to identify nonlinearity but 

have the advantage that they generally produce FRF's which are linearised 

to a given excitation level, thus detection of nonlinearity is possible 

from a series of tests. 

Higher Order Spectra and Time-series Methods 

An increasing interest and number of applications is arising in the 

1. f h f h B" lJ h" h h b h b f 1terature o t e use o t e 1-spectrum, w 1c as een s own to e o 

particular value for problems concerning quadratic type non-linearities 

when the input is close to Gaussian white noise. This is however, a 

special case of the Volterra series which is discussed in the next section. 

The ·Bi-spectrum is discussed in some detail in references 13, 14, 15, 

which describe the equations necessary to compute the Bi-spectrum. 

Time series methods have been extended from ARMA (!uto ~gressive 

16 
~ving !verage) models to NARMAX models (Nonlinear ARMA for !ogeneous). 

These have been applied prinicpally in to control systems but are cur-

17 rently being considered in relation to general non-linear systems. 

These methods appear to have advantages over the functional series 

(Volterra, Wiener) as they are computationally more efficient1 but no 

application of this approach to structural dynamics problems has been 

currently reported. 

Volterra/Wiener methods have been applied to non-linear structural 

dynamics problems and these methods are considered in some detail in 

Part 2. 
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PART 2. FUNCTIONAL SERIES ANALYSIS OF SINGLE INPUT, SINGLE 

OUTPUT (SISO) NON-LINEAR SYS1~MS 

The previous section described several procedures for identifying 

and quantifying non-linearity in SISO dynamical systems. However most 

of these approaches used either the classical frequency response function, 

H(w) Y(w) =~{ y(t)} ~= Fourier transform 
= X(w) ~{ x(t)} (21) 

to characterise the non-linearity by detecting distortion in the response, 

or some form of linearisation procedure to describe the behaviour of the 

system. Strictly speaking, equation (21) when applied to linear systems 

is based upon the convolution integral, which utilises the principle 

y(t) /" h(t)x(t-T)dT 
0 

(22) 

of Superposition to state that the output y(t) is the sum of the systems 

individual impluse responses arising from an input x(t) expressed as a sum 

of finite impulses. 

If we extend this formulation to a non-linear system we begin by 

considering the response to two identical impulses applied at different 

times t 1 and t 2, here t 2 > t 1. These can be expressedas the inputs 
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a6(t-t1) 

a6 (t-t2), 6 = Dirac delta function 

G.R. Tomlinsen 

(23) 

These inputs elicit responses y1 (t) and y2(t) respectively, which, if the 

system is time invariant results in, 

y 1(t) = y 2(t) (24) 

but with y2 (t) occurring at (t2-t1) seconds later in time. 

Consider the input excitation as the sum of the two impulses, 

x(t) 
(25) 

This produces a response y(t) which in general is, 

y(t) ; y1 (t) + y2 (t) (26) 

However, y(t) only deviates f_rom the sum of y1 (t) and y2(t) when t > t 2• 

Thus we could express the output as, 

y(t) = y1(t) + y2(t) + t 2<t-t1,t-t2> 

with t 2(t-t1,t-t2) = 0 ; t 1 > t < t 2 
(27) 

where f(t-t , t-t ) represents a correction term for the difference be-
1 2 

tween y1(cl + y2(t) to the impulses at t 1 and t 2 respectively. 
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If we now express a continuous input signal as a summation of i~ 

pulses i.e. 

CO 

x(t) I:x(t}IS(t-t)f!t (28) 
-co 

then the response of the non-linear system at any time can be considered 

as the superimposed responses due to each impulse plus the correction 

te rms . Th us we can wri te , 

yl (t) I: fl (t-t) 

y2(t) I: f2 (t-tl' t-t ) 2 

y3(t) I: f3 ( t-t 1' t-t2' t-T ) 
3 

and, 

y(t) = y1(t) + y2(t) + --- yn(t) 

y(t) 
00 

I: 
i=l 

y. (t) 
1 

(29) 

(30) 

(31) 

Equation ( 31 ) can be written as a natural extension of ~~e linear 

convolution integral, 

y(t) 
00 -l h(t)x(t-t)dt 

n 

i.e. yn(t) = L: •••-loo hn (t 1, ••• tn) i~lx(t-Ti) dti 

n times 

(32) 

(33) 
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Equation ( 33 ) is a functional series expansion and was first credited 

to Volterra. 
18 

As Stuch it is frequently referred to as the Volterra series, 

the quantities h1(T), h2( T1,T2) being referred to as the kernels; 

the first order kernel h1 (T), representing the manner in which the past 

values of the input affect the present value of the response. The nth 

order kernel represents the interaction between the 'n' past inputs and 

the effect that this interaction has on the system response. The kernels 

are zero for any of their arguments being less than zero (i.e. negative 

time) since physical systems (linear or non-linear) must obey causality. 

Equation ( 33 ) can be expressed in the frequency domain by taking 

the n dimensional Fourier transforms to give, 

n 

y (fl, ... f ) n n 
H (f1, ... f) 

n n ilh 
y (f f ) 

H (fl' • •• f ) .. ft 1. •· n 
n n n 

n x <t. > 
i=l 1 

x(f.) 
1 

(34) 

(35) 

th It should be realised that the n order frequency response function does 

not exclusively describe the system behaviour as the effect of kernels 

th higher than the n may also be important. 

2.1 Determining the kernels in the functional series 

In' 6rder to obtain the kernels in the Volterra series as described 

above it is necessary to use a series of controlled impulses at times 

. . . d . 19 t 1,t2 tn. This has been successfully ach1eved by V1nh an Choucha1 
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using two impulses to identify the secend order transfer function. 

However, there are limitations with this approach since in the general 

case it is impractical to consider impulse sets greater than say three 

as the control instrumentation requirements become significant. This 

implies that it is desirable to measure the kernels individually. This 

is possible by using an alternative functional series whose terms are 

orthogonal under the condition of a white noise input. A series which 

. . 18 satisfies these conditions is the W~ener ser~es 

The Wiener series, relating the output to a Gaussian white noise 

input x(t) is, 

i.e. y (t) 
n 

k + 
0 

n 
1 ... f k (T 1, ..• T ) II x(t-t.)dT. 
0 n times n n i=l ~ ~ 

-(n-1) A 
n-1 

! 00 
• • f k ( T 1' ... T ) II 

(n-l)timesn n i=l 
X (t-T.)dT. 

~ ~ 

(36) 

(37) 

where A is the amplitude of the power spectral density of the white noise 

input signal. 

Here we find the principal difference between the Volterra and 

Wiener methods. The Wiener kernels of order higher than the first are 

dependent upon the type and level of the input signal whereas the Valterra 

kernels are not. In addition, the first order Wiener kernel is, in 
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general, different from the linear response whereas the first order 

Valterra kernel represents the linear response. It is also worth noting 

that when the system kernels are zero for orders higher than the second, 

the Wiener kernels k1( T) and k2(T 1,,2) are the same as the Valterra 

kernels h1(T) and h2 (< 1,,2). 

2.2 Measurement of the first and second order Wiener kernels for 

quadratic non-linear systems using cross-correlation. 

Lee and Schetzen18 showed that the Wiener kernels can be obtained 

directly using correlation methods. The basic ideas relating to this 

will be presented below, reference to 20 gives more complete details. 

The nth order Wiener functional is constructed such that it is ortho-

gonal to the n-1 functional, 

(38) 

where E [- J denotes the expected value (or time averaged value) and 

G (k x(t)) • ko, 
0 0 

(39) 

(40) 

x(t) is taken to be a Gaussian white noise zero mean input signal. 

Thus the zero order kernel is simply the average value of the out-

put i.e. 
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k 
0 

219 

(41) 

Determination of the first order kernel is obtained by multiplying 

both sides of equation ( 37 ) by x(t- T1) and taking the expected value. 

Due to the orthogonality condition all functionals of order higher than 

one are zero. Also the expected value of the product of the zero order 

kernel with the time delay is zero i.e. 

0, (42) 

since x(t) is a signal with zero mean. Thus we find that after multip

lying both sides by x(t- T1) and taking the expected values we have, 

E[y(t) X (t - T)] (43) 

We recognise that the left hand side of equation ( 43 ) is the classical 

cross-correlation function Ryx(T). Further, the expected value under 

the integral sign can be recognised as the auto-correlation function 

Rxx (T-T 1). 

I{ we introduce the delta function then we can write, 

(44) 

thus equation ( 43 ) becomes 
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Ryx(<) 

A 

1 
A E[y(t)x(t-·r)] 

G.R. Tomlinsen 

(45) 

(46) 

For the second and higher order kernels, additional conditions must be 

satisfied since the necessity to introduce multi-order delays i.e. 

(t-T1)(t-<2) --- results in the lower order kernels offering a contribu

tion. This can be seen in the derivation of the second order kernel 

k2 ( 't 1, 't 2) • 

Multiplying both sides of equation (37) by x(t-T 1) x (t-<2) results 

in all the higher order kernels above two being zero. However, the zero 

order kernel has an effect as follows; 

20 
and the complete result is 

(47) 

In order to remove the effect of the first term on the right-hand side 

of equation (48), the mean value (k ) is subtracted from the output time 
0 

response before the second order correlation is performed, i.e. 

yo(t) = y(t) - ko • y(t) - E[y(t~ (49) 
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Thus the second order kerne1 is obtained from, 

1 
- E ( y {t) 
2A2 o 

(SO) 

This can be generalised to 

1 m-1 
E[(y(t)- r0 G {t))x(t-t 1) ••• x(t-t )] m= m m (51) 

and the practical procedure is shown graphically in the figure below. 

x{t).,, SYSTEM y(t) .. 

Ji,(t) 
y{t) .. , E[y(t)]= ko 

ko .. ., yo(t) 

yo(t) 

:I lk (T) .. x(t-T) 
E[y(t)x(t-t)] 1 

yo{t) 

x(t-t1) E [y (t) x(t-t 1) x(t-t2 )] k2(tPt2) 
x(t-t2) 
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2.3 ~plication to dynamical system$ incorporating non-linearities 

The cross-correlation methods described above are applied to the ex-

traction of the first and second order Wiener kernels of the system shown 

in block diagram form in the figure below. 

CASE A 

x( t) •-JI-L_INE_AR_S_Y_S-TE_M.-JI--v-(_t_)-1" .. , SQUABER 

CASE B 
x(t) .. I 4 2 3 ·~ Y + 2oy + 10 y + ay +by ~--t•~ y(t) 

The dynamics of the linear system are described by the equation, 

2 
y + 2tw y + w y = x(t) 

n n 

where w 
n 

natural undamped frequency 

• critical damping ratio 

= 100 rad/s 

= 0.1 

(52) 

x(t) • band limited, zero mean Gaussian signal whose cut-

off frequency is much higher than the system natural 

frequency. 
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CASE A The output of the system is represented as, 

y(t) 2 \) (t) (53) 

In this case the Weiner kernels are obtained as follows, 

v(t) (54) 

y(t) (55) 

By inspection the kernels are, 

(56) 

k (-r 1 , .•• -r ) = 0 n > 3 
n n 

Equation ( 52 ) was simulated on an analogue computer and the output was 

fed into a squarer. The input x(t) and the output y(t) were simultane-

ously sampled and stored in time blocks of 512 points. The mean va1ue of 

the output was removed from each block of data and these data were then 

used to perform the second order cross-corre1ation according to equation 

(56 ). For the ana1ysis, -r 1 = N6t and -r 2 = M6t, where 6t = 5 ms and N,M 

1 ~ 30. The samp1ing period was chosen to ensure that the Nyquist fre-

quency criterionwas satisfied. 
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Figures 9a and 9b show the results obtained from this test 

whereby the second order kernel k2 (T 1,,2) is plotted as a function of 'l 

and T2• For Figure 9a a total of 2000 averages were used. For Fieure 

9b this was increased to 8000 averages. According to equation (56 ), 

the exact value of k2 (T 1,,2) is simply the product of the linear impulse 

response functions at , 1,,2• Thus on the leading diagonal we should find, 

Figure 9c shows the exact second order kernel k2 (T 1,,2) and it can be 

seen that the results compare very closely with those obtained using 

cross-correlation. 

CASE B Linear System with quadratic cubic stiffness non-linearity. 

The governing equation of the system is, 

(58) 

In this case the response y(t) will include the first, second and higher 

order kernels. Equation ( 58 ) was simulated on a digital computer with 

a ~ 107 and b = 5 x 109 using a Runge-Kutta-Merson 4th order routine 

with a white noise input signal generated by passing the output of a 

random number generator through an eigth order Butterworth filter, re-

sulting in a band limited Gaussian white noise signal with a cut-off 
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Fi gure 9 (a) Fi gure 9 (b) 

Second Order Hiener Kerne!: Linear Syste~ Output Sqvored 

4 data b locks averaged 
Secend Order Hlene r Korne I: Linear System Output Square-d II 

16 dah blocks averaged 

Figure 9 (c) 

Product of T~o Fi rst Order Hiener Kerne!: 

FirURE 9 SECOND ORDER KE RNELS FOR THE SQUARE 

LAW SYSTEM. 
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frequency of 200 Hz, this being twelve times greater than the natural 

frequency of the model and sufficiently rieb in harmonic content to excite 

the non-linear characteristics. Figure ~0 shows the simple frequency re-

sponse function and coherence for the linear (a,b =0 in equation. (58)) and 

non-linear models. Equations ( 46 ) and ( 50 ) were used to generate the 

first and second order Wiener kernels by sampling the input and output 

of the simulated system. The kernels were then used to predict the actual 

output of the non-linear system. Figure 11 shows the actual and predicted 

outputs using the first order kernel only and the first and second order 

kernels. 

USING kl ONLY 

. 
; 

I 

FIGURE 11: ACTUAL ( ----) AND 
PREDICTED (-) 
OUTPUTS. 

. 
i 
! 

0 

50 

FIGURE 10: FRF AND COHERENCE FOR 
LINEAR AND NON-LINEAR 
SYSTEM. 
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The need to extend the analysis to a third order kernel is not necessary 

in this case since the combination of the first and second order kernels 

is sufficiently accurate. This becomes obvious when one exa~nes the 

output of the system to a sinusoidal input whose amplitude produces the 

same excursions as the actual input. This is demonstrated by Figure 11 

which shows that only the second harmonic is significant for the excita-

tion level employed. Figure 12 was generated by using a fixed amplitude 

sine wave whose frequency varied from 0 to 25 Hz. 

FIGURE 12: RESPONSE OF THE 
NON-LINEAR 
SYSTEM TO A 
HARMONIC PROBING 
SIGNAL. 

!. 
S I I . 
I 
'Ii 
I a 
;:; ' 

' This harmonic probing' procedure is a practical way of estimating 

the number of Wiener (or Volterra) kernels necessary to define a non-

linear system, assuming that the prohing signal produces the maximum 

excursions that the non-linear system is likely to experience. 

Valterra Representation 

The Valterra kernels of equation ( 58 ) cm1 also be calculated 

. . . 21 jwt 
us1ng the harmon1c prob1ng method. By setting the input to e and 

.wt 
equating coefficients of eJ , the first order Valterra kernel is found 

to be, 
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1 

(59) 

.(w1+w2)t 
Likewise, putting x(t) ~ eJ and equating coefficients of 

.(w1+w2)t 
eJ gives the second order frequency response function H2(w1 ,w2) 

i.e., 

(60) 

Figure 13 shows the modulus of H2 (w 1,w2). The two peaks 

along the leading diagonal where w1 =w2 correspond to resonances at wn/Z 

and w • This means that the second order non-linearity will be a max-n 

imum at excitation frequencies w=wl,Z/w and w = wl,Z/Zw • The actual 

kernels can be obtained by taking the n~h order inverse ~ourier transform 

th of the n order frequency response function. 

FIGURE 13: 

MODULUS OF THE 
SECOND ORDER FRF 

One of the interesting aspects of the higher order frequency re-

sponse functions is that they be.come increasingly complex and smaller 
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in magnitude with increasing spectral number. For example, in the above 

problem the peak of the H2 (w ,w) function is found to be approximately 

six times smaller than the peak value of H1(w) and twenty times smaller 

than H3(w). 

The consequences of this are that accurate detection of the higher 

order spectra using correlation methods may prove to be difficult in 

practical testing. However, it has been found that by considering ooly 

the regions of the kernels close to and inclusive of the leading diagon-

al, sufficient accuracy can be obtained. The importance of this lies 

in the fact that a significant computational improvement is gained which 

makes the above procedures a feasible approach to the detection and pre

diction of non-linear systems. 
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NUMERICAL ACOUSTIC RADIATION MODELS 

P. Su 
KatboUeke Univeniteit Leuven, Belpum 

INTRODUCTION 

A phenomenon difficult to identify and quantify is the complex relation 

betweeen structural Vibrations and the sound caused by those Vibrations 

( structure borne . sound). This relation is important since a large 

percentage of the noise pollution is of structure borne nature. Whenever 

a mechanical structure producing Vibrations is conceived, measures should 

be taken to reduce the sound inherent to those Vibrations. To do this 

efficiently the sound radiation mechanism must be first identified and 

quantified in appropriate models. The theoretical base for such a model 

is known since more than a century, and is given by the solution of the 

3d wave equation, with the surface velocity of the vibrating structure as 

boundary condition. Several theoretical studies have been devoted to 

this subject in the past and have resulted in analytical formulas which 
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are only valid for a limited number of relative simple source geometries 

such as axisymmetric structures (spheres, cylinders) or flat plates. 

Analytical solutions for the general radiation problem do not exist, 

numeriaal solutions are conceivable but rather complex due to numeriaal 

instability problems, and hence require considerable computer power. 

This paper deals with the implementation and use of a numeriaal 

radiation model based on a solution of the Helmholtz integral equation, 

the model has been integrated into a global sound optimisation philosophy 

by combining finite element modeling (FEH), modal analysis and the 

mentioned radiation model. Hereby the Vibration patterns generated by 

the ··FE model or the experimental modal analysis identification serve as 

input to the radiation model. Linking FEH results to a radiation model 

yields an optimal tool for judging a new design with regard to its sound 

radiation, provided that a dynamic finite element model of the concerned 

design is available. Linking data from experimental modal analysis 

identification to a radiation model creates on the other band the 

possibility to predict the impact of local structural modifications on 

the sound radiated by mode shapes at resonance frequencies, which is 

important for trouble shooting applications or for prototype 

optimisation. Applying this method, on a real life structure such as a 

combustion engine the influence of changing locally the stiffness, mass 

or damping on parameters such as the radiation efficiency or the radiated 

so und power can be predicted. 
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THEORY 

The general acoustic radiation problem can be formulated as a boundary 

value problem (cfr.fig.1): find the solution for the pressure in an 

infinite medium (V), with known density and speed of sound, where an 

arbitrarily shaped object is immersed. As boundary condition the normal 

component of the velocity at any point on the surface (S1 ) of the 

immersed object is given. It can be shown that a solution of this 

boundary value problem must satisfy the three dimensional wave equation 

as well as the Sommerfeld boundary condition. Exact solutions of this 

boundary value problem are possible when the surface represents a level 

value of a coordinate in one of the few coordinate systems in which the 
l 2 J ~ 

wave equation can be separated. 

s, 

Fig.1 General field lay-out 
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The most general of these exact solutions are probably those for 

axisymmetric surfaces, where the radial factor of the pressure is a 

combination of spherical Bessel and Neumann functions while the 

tangential factor of the pressure is expanded in a series of Legandre 

functions whose coefficients are determined by the boundary conditions. 

One of the problems inherent to such exact solution is that the boundary 

conditions must also be expressed in terms of a series of Legandre 

functions. 

An interesting mathematical property is the fact that, for the given 

boundary condition, the 3D wave equation can be expressed as an integral 

equation. This implies the introduction of the free-space Green function 

and the combination of the 3D wave equation with the Gauss-integral 

theorem which relates a surface to a volume integral. Doing so the 

pressure field at an arbitrary field point can be formulated as the 

surface integral of a linear combination of the surface pressure and 

velocity over the radiating boundary. This integral equation is known as 

the Helmholtz integral equation. 

where g(R/Rc,> = eik• /r (free space Green function) 
r = /R- Re,/ w = 2rrf 
v<Rc,> = structural velocity 2rrf k = wavenumber (-). 

c 

( 1) 

Since the only prescribed quantity is the surface velocity, the surface 

pressure being unknown, the pressure in the field can only be determined 
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by allowing the field point (~) to approach the radiating surface and by 

consequently solving the resulting integral equation (Fredhom integral 

equation of the second kind) for the unknown surface pressure p(R 0 ). For 

arbitrary source configurations, where the solution is not restricted to 

a particular frequency range, the surface pressure distribution can only 

be obtained by solving the Fredholm integral equation numerically. Once 

the surface pressure is obtained, the Helmoltz integral equation becomes 

a simple integral representation of the pressure at field points not 

located on the radiating surface, which on his turn can be solved 

numerically. 

The integral equation can be circumvented if a Green function which 

satisfies the Neumann boundary conditions can be constructed. In this 

case the unknown pressure vanishes in the surface integral, thus reducing 

the integral equation to a simple integral representation. Unfortunately 

a Green function satisfying the Neumann boundary conditions can only be 

constructed if the boundary is completely defined by the value of a 

single coordinate, and if the wave equation is separable in this 

coordinate system. 

p(R>= -
· eikr 

Jwp ! - v(RJ dS0 
2rr r 

0 

( 2) 

Similar to the exact solution those conditions are only met for simple 

boundaries such as an infinite plane, cylinder or sphere, if the pressure 

can be represented by linear conbinations of wave harmonics. The 

solution for infinite plane sources deserves special attention since it 
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yields the well-known Rayleigh's integral (eq.2) from which it can be 

concluded that a planar source located in an infinite baffle is 

equivalent to a distribution of point sources. This principle forms the 

theoretical basis of the point source model. 

POINT SOURCE RADIATION MODEL BASED ON RAYLEIGHS INTEGRAL 

Since the Vibration patterns, originating from finite element models or 

from experimental modal analysis procedures are discrete, they are only 

determined in a finite number of points distributed over the surface of 

interest. As a result it will be necessary to approximate the applied 

surface integral (eq.2) by a summation over those discrete points. This 

is the equivalent of substituting the vibrating surface by a finite 

number of point sources. Each or those elementary sources represents a 

fraotion (Si ) of the original surface. The acoustic strength of those 

souroes is given by the product of the partial surface and the structural 

velooity of the point whe~e the surface was attributed to. If for 

example the vibration of a plane surfaoe is given by a pattern of n 

points, the pressure level for an arbitrary point above the radiation 

surface is equal to : 

~n 1 ·t·) (ikcv; -- tJ "S; 
i= 2nr; 

where r;= IR;-Rol· 
( 3) 

Similar expressions can be derived for the air partiole velocity. 
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Consequently the acoustic intensity is easy to derive, since its value is 

given by the product of particle velocity and pressure. The acoustic 

power radiated by a surface is given by the average of the intensity 

normal to the surface, multiplied by the size of the surface. Equation 3 

is only valid if the acoustic environment is reflection free. The 

influence of eventual reflecting surfaces close to the radiating surface 

can therefore be simulated by simply adding image sources at the opposite 

side of the reflecting surface. The reflection influence is taken into 

account by adding a supplementary pattern of noise sources to the source 

lay-out, this supplementary pattern is the image of the original source 

pattern. 

,.., 
:: 
• c • .. 
c .. 
... c 
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Predicted and measured sound intensity for a clamped 
plate, grid element size (1.5x1.5cm). 

The accuracy of the radiation model has been verified by comparing 
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the predictions of the radiation model with experimental results. The 

result of such a verification experiment is given in fig.2. This diagram 

shows the average near field sound intensity levels for the first five 

resonance frequencies of a constrained plate. The plate (50XSOx.2cm) was 

clamped in a concrete block and excited with white noise (0-2000Hz). The 

near field intensity patterns was measured together with the modal 

deformation patterns, which served as input for the acoustic radiation 

model. The intensity measurements were conducted with the aid of the 

intensity measurement robot using a two microphone intensity probe. As 

can be noticed from those results, the agreement between experiment and 

prediction is fairly good. Up to the fourth resonance frequency the 

accuracy is better than 1dB. The larger error of the fifth resonant 

frequency is probably due to an insufficient number of source points. 

The main advantage of the point source model is its simplicity, it 

requires up to 100 times less computing time than the general solution 

treated hereafter, it is however limited to 20-sources. 

NUMERICAL SOLUTION OF THE HELHOLTZ INTEGRAL EQUATION 

Searching through literature one will find several papers treating the 

numeriaal solution of Rayleighs integral formula (eq.2), but publications 

treating the numeriaal solution of the 3D Helmholtz integral equation 

(eq.3) are rather scarce. 
s 

Schenck was the first to mention the problems 

caused by the non-uniqueness of such solutions at frequencies 
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corresponding to the eigenfrequencies of the associated interior problem. 

To overcome this problem he introduced the Combined Helmholtz Integral 

Equation Formulation (CHIEF) where an overdetermined system of algebraic 

equations is obtained by combining the surface Helmholtz integral 

formulation with additional equations generated from the interior 

Helmholtz integral formulation. The difficulty of this approach is the 

determination of the optimal number and position of the interior points 

which are used to generate the additional equations. Except for a recent 
6 

paper of Koopman no application of the combined Helmhol tz integral 

equation formulation has been reported so rar. 

Another method for overcoming the uniqueness problem was introduced 

by Burton 
8 

and has been refined by Meyer et al, 
9 

and later by Filippi. 

This method is based upon the fact that a unique solution for the 

acoustic pressure can be obtained by solving a modified integral equation 

consisting of the original integral equation and its differentiated form. 

This combination yields a unique solution for all frequency values. 

Unfortunately, the differentiated form of the integral equation contains 

a strongly singular integral, which cannot be directly integrated. 
8 

Burton and Mayer approach this problem by using a transformation to 

interpret the singular integral. This method is efficient but results in 

a more complicated integral equation which requires more computer power. 

For a more detailed review of numerical radiation models we refer to 
I I 

Vandeponseeele. The majority of those publications however do not 

include an experimental verification of the accuracy of the proposed 

numerical solution. They limit themselves to a comparison with 
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analytically predicted results for simple configurations such as spheres. 

In a few cases correlation with measurements is verified but only for 

simple source geometries. 

For our applications the principle of the CHIEF method was retained 

since it is a reasonable compromise between accuracy, computational 

effort and versatility, at least for the frequency range where the 

density of resonance frequencies is low, which for most mechanical noise 

sources is the frequency range where most noise problems occur. The 

difference with previous investigations is the requirement for the 

computational scheme to be compatible with those used in the existing 

experimental modal analysis (GMAP) and finite element methods. 

PRINCIPLE OF THE NUMERICAL SOLUTION 

The pressure at a point R on a closed surface (fig.1) is given by 

the Helmholtz integral equation (eq.1). By taking the derivative of the 

free space Green function the integral equation can be rewritten as 

follows : 

- k - eikr I 
p(RJ = - - r p(RJ -(-- j) cos y dSo 

2rr S0 r kr 
( 4) 

- jpck I v(RJ eikr dSo 
2rr S0 r 

Equation (4) can be solved by direct numeriaal integration, but even for 

simple sources the computations are too time consuming. An approximate 

solution is possible by dividing the source surface S into N planar 
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surface elements. Planar surfaces are rar more interesting since 

integrations over two dimensional surfaces are more tractable. orten 

closed form expressions can be found, thereby avoiding numerical 

integration. The number of surface elements is chosen such that one can 

assume that the velocity and pressure distribution over the elements is 

uniform. Equation (4) can then be written as 

where p(R ) 

The dipole 

n 

p(R;) = ~ [p(Ri) Dii + v(Ri) Mq) 

pressure at the center of element i 

I . 
( -- - J) C05yij dS 

k ru 

coefficient D. . relates the 
l.J 

contribution of the 

( 5) 

pressure at 

element j to the pressure at element i. Similarly, the monopale 

coefficient H. . relates the contribution of the normal velocity of 
l.J 

element j to the pressure at element i. lf equation 5 is repeated for 

each centerpoint of all N elements, one obtains a NxN system of linear 

inhomogeneaus equations. 

[ [&q) - [Dq) ] [P~ = [Mq) [V q)T ( 6) 

This NxN matrix system can be solved for the element pressures by one the 

many appropriate methods. We applied the Hauseholder method since it 

handles also overdetermined systems. Once the pressure on the source 

surface known, it is easy to derive the radiated acoustic power. By 
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definition the radiated acoustic power is given by 

W=Re ~ pu, dS ( 7 ) 

where W : Acoustic power 
u, : Partiale Velocity 

Since on the radiating surface the partiale velocity is equal to the 

surface velocity, the radiated power can be calculated once the surface 

pressure distribution is known. The integration algorithm to calculate 

the D .. and 
~J 

~j terms of eq.S is a specially developed analytical 

sectorial integration algorithm which is far more accurate and 

numerically stable than the usually applied algorithms (cfr. 
I 2 

Vandeponseele ). 

OVERDETERMINATION OF THE SYSTEM OF EQUATIONS 

It is well known that the Helmholtz integral equation system will 

fail to yield the unique solution of the acoustic radiation problem at 
I 0 5 

certain characteristic frequencies. Copley and Schenck have shown that 

these characteristic frequencies are identical to the eigenfrequencies of 

the corresponding homogeneaus interior (Dirichlet) problem. Since the 

uniqueness problem occurs only at certain frequencies the problem can be 

avoided by considering only frequencies which are not close to internal 

eigenvalues. This is not feasible since the internal eigenvalues are not 

known a priori and since at higher frequencies the eigenvalue density is 

so dense that it is almost impossible to avoid the internal eigenvalues. 

Moreovar since the integral equation is discretized into a system of 
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algebraic equations, there is no langer a specific eigenvalue but a range 

of values at which the matrix is ill-conditioned. 

5 

Schenck suggested to overcome this non-uniqueness problem by solving 

an overdetermined sytem of algebraic equations, obtained by combining the 

system of algebraic equations generated from the standard integral 

equation (eq.1) with additional equations originating from the internal 

Helmholtz integral equation. These additional equations are necessarily 

associated with points laying inside the source surface. It can be shown 

that the overdetermined system of equations yields always a unique 

solution. But in practice the position of those internal points is 

important. Indeed if the internal points are chosen near the nodal 

points of the interior eigenfunctions, the additional equations fail to 

provide the necessary constraints to ensure uniqueness. In general, both 

the eigenvalues and nodal lines of the internal problem are unknown so 

that one has no guidance in selecting the additional internal points. It 

is therefore suggested to use a sufficient number of internal points. 

The Hauseholder method which was chosen for solving the matrix 

system is well suited for handling overdetermined systems, and was 

therefore preferred over other methods. The condition number of the 

matrix is used as an indicator, warning the user at which frequencies 

singularities occur. 

ACCURACY OF THE GENERAL RADIATION MODEL 

To verify the accuracy of the radiation model, the acoustic power 
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radiated by a pulsating sphere has been predicted by the model and 

compared to the levels resulting from analytical formulas which can be 

found in most textbooks on theoretical acoustics. Actually radiation 

efficiencies have been compared, since they are independant of size and 

amplitude of the source (sphere}. The pulsating sphere has been modeled 

using 72 triangular elements. To illustrate the influence of the 

overdetermination the radiation efficiencies have been calculated twice, 

once without overdetermination, and once with one additional internal 

point situated at r=0.3R (where R is the radius of the sphere}. The 

results are represented in fig.3 and show close agreement between the 

predicted and analytical efficiencies. 

Fig.3 
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The pronounced discrepancies between predicted and analytical results at 

kr=3.4 and kr=6.8 are due to the non-uniqueness problem. Indeed those 

wavenumbers correspond to the first and the·second internal resonance 

frequency of the sphere. This confirms the fact that the method, we 
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selected for solving the Helmholtz integral equation, yields erroneous 

results for frequencies around the internal resonances. 

Ovardetermination of the system using additional internal points improves 

the accuracy, but to our judgment further research is required to 

optimise the position and number of overdetermination points. 

ACOUSTIC RADIATION OF THE OlL SUMP OF A DIESEL ENGINE 

A first real life verification test of the radiation model was 

conducted on the oil sump of a diesel engine. The oil sump is, because 

of its size and location one of the noisiest components of combustion 

engines. The experimentally measured Vibration amplitudes of the oil 

sump have been used as input for the radiation model, while the predicted 

sound power levels have been compared with the measured power levels. 

Test object was a bare engine block with only the oil sump connected to 

it. An electromagnetic shaker was used to excite the engine with white 

noise in the frequency range (0-2000Hz). During excitation the Vibration 

levels as well as the radiated sound were measured. The Vibration levels 

were derived from acceleration measurements in 82 points ·all over the 

structure. Some of those vibration patterns are shown in fig.4. The 

experimental sound power levels are based on surface scanned near field 

acoustic intensity measurements. All surfaces of the oil sump have been 

scanned with a two microphone acoustic intensity probe, yielding the 

average intensity for each surface. The sound power radiated by each 

surface is given by the product of the averaged intensity levels with the 

size of the considered surface. Summing up the sound power for all the 
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surfaces of the oil sump yields the power radiated by the oil sump. 

~ ~···"· 
507H• ~ ~ 

~ •~·"· 704Hz~ ~ 

~ ~ 1102H• 

···"· ~ ~ 
Fig.4 Vibration patterns of an oil sump at resonance frequency 

The predicted and measured power levels are summarised in the following 

table. Only the most pronounced resonance frequencies have been listed. 

Freq. 507.1 605 648 670 704 755.2 795 865 1005 1102 

Exper. 65.1 62.4 65.8 59.5 66.0 66.5 62.7 68.8 60.4 65.0 

Model 64.3 63.1 66.7 60.2 64.8 67.2 62.1 70.2 61.3 63.5 

The average difference between experiments and model is +1- 1dB. However 

by monitoring the condition number of the matrix system, the 

non-uniqueness problem did not occur for the listed frequencies. Huch 
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1arger discrepancies between measurement and mode1 predictions might 

occur for those frequencies where the matrix system is i11-conditioned. 

CONCLUSION 

Two computationa1 procedures to mode1 the relation between structural 

vibrations and radiated sound have been introduced. They have been 

conceived such that structural deformation patterns originating from 

experimental modal analyis or from finite element calculations can be 

used as input data. The first model is based on a reduction of the 

Green's function in discrete points, and is computationally much simpler 

than the second which is based on a general 3D solution. Both models 

yield accurate predictions compared to experimental results but the 

method based on the Greens's function is limited to 20 sources. 
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DIGIT AL ACOUSTIC INTENSITY MEASUREMENTS 

P. Su 
KatboUeke Uninniteit Leuven, Belpum 

ABSTRACT 

A measurement method (digital acoustic intensity measurements) is 

proposed, which, in contrast to the classical methods, enables the 

measurement of the acoustic intensity in the near field of a vibrating 

structure. As will be demonstrated the grafic representation of the near 

field intensity vector is a useful resource in the experimental study of 

the sound radiation mechanisms, in identifying noise sources or in 

estimating the sound contribution of different subcomponents of a complex 

source. As such it is a unique tool to identify the radiation mechanism 

of vibrating structures and to study the complex relation between 

structural Vibrations and radiated sound. 
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INTRODUCTION 

The acoustic intensity (I) of a sound wave is defined as the average 

acoustic power transmitted per unit area in the direction (r) of the wave 

propagation (u) and is therefore equal to the average over a period (T) 

of the the product of pressure (p) and air particle velocity (Ü), 

l JT i = - p(t)U(t)dt 
T o 

( 1) 

·Since harmonic signals are commonly expressed in terms of their rms 

values, equation (1) can be written as 

where 

( 2) 

rms value of I(t) 
p : rms value of p( t) 
ü : rms value of ü( t) 
~: phase angle between p(t) and u(t) 

The impact of the phase angle (~) is most apparent marked in strong 

reactive fields, for example standing waves, where sound pressure and 

particle velocity oscillate in opposite phase. As a result no acoustic 

energy is transmitted and the resulting intensity becomes zero. In a 

free progressing sound wave on the contrary, pressure and particle 

velocity are in phase and a maximum amount of acoustic energy is 

transmitted. This Situation is characteristic for the far field where 

the intensity is given by : 

where 

Ii I= pl/pc 

c velocity of sound 
p air density 

( 3) 
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Since in this expression the acoustic pressure is the only unknown 

quantity, most sound power estimation standards are based upon it. 

However, it is only valid in the far field and yields considerable errors 

when applied to the near field. The error can be as large as 10dB close 

to the radiating surface even forasimple source such as a 'pulsating' 

sphere. Near field sound intensity measurements as dealt with in this 

paper do not suffer from these constraints. 

REVIEW OF ACOUSTIC INTENSITY TECHNIQUES 

The first attempts to estimate the sound intensity in the near field 

were based on the physical measurement of pressure and particle velocity. 
I 

Already in 1932 a patent was granted to H.F. Olson for an acoustic 

watt-meter which was based on a velocity-ribbon microphone and two 
:• s 

crystal pressure microphones. Experiments of Clapp et al, Baker, Zyl et 
• al, with similar equipment, illustrated the limitations of this 

technique. Indeed, due to extraneous air movement, insufficient damping 

of the wire at the wire resonance frequencies, and the need for a a 

steady air supply the technique is limited to laboratory conditions. 

Since the particle velocity itself is difficult to measure, it is 

obvious to derive it from the pressure gradient which, within certain 
5 

frequency limits, can be measured easily. Schultz was the first to apply 

this principle, he used two pressure-sensitive condensor microphones, 

mounted back to back to approximate the pressure gradient. Due to the 
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limitations of the electronics of those days, the subsequent integration 

and ~ultiplication of the microphone signals suffered from innacuracy. 

This is probably the reason why one has to wait until the seventies to 

see this principle applied by others. 
7 6 

H.P.Lambr.ich and W.A. Stahel and F. Friundi reported in 1976 on an 

acoustic intensity measuring instrument commercially available and 

manufactured by the Interkeller AG. The instrument was conceived for the 

rapid and reliable localization of acoustic sources and sinks on 

vehicles. 

Around the same period of time similar equipment was developed at some 

university laboratories and research on the subject was started, for 
8 9 

example the accuracy study of Fahy, and Hamanns applications on machine 

tools. 
1 0 

Fahy formulated the acoustic intensity in terms of the cross-spectrum 

between two closely spaced microphones. This finding permits the use of 

commercially available equipment to derive the acoustic intensity, since 

the cross-spectrum is a standard function on most Fast Fourier Analysers 

(FFT). As a result the special electronic circuitry of the past is no 

longer necessary and post processing of the measurements becomes possible 

since digital equipment is used. This principle was first applied and 
11 

refined by Chung and Pope for the analysis of engine noise. Their 

studies stressed the need for accurate phase matehing of the microphones. 

They also investigated the effects of microphone spacing, number of 

averages and the size of the microphones. 

Several researchers, both at universities and industry, have since 
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then successfully improved and applied the method. This culminated in an 

international congress on acoustic intensity in 1981 organised by the 

CETIM. During the last years however one sees an unbridled expansion of 

acoustic intensity measurements, which are applied in season and out of 

season, emphasizing a definite need for standardisation of the 

measurement procedure and of the application field. This does not alter 

the fact that the intensity measurement technique is an highly efficient 

tool for visualising the relation between structural Vibrations and 

radiated sound, as will be illustrated in this paper. 

PRINCIPLE AND MEASUREMENT PROCEDURE 

Digital acoustic intensity measurements are based on the estimation 

of the pressure gradient using two closely spaced microphones. The 
I I 

applied procedure is similar to the one presented by Chung and Pope, but 

has been refined integrated in a dedicated software package. Applying 

Newtons second law to a small voll.ae of air yields an equation for the 

air particle velocity as a function of the pressure gradient : 

öü 
- grad p=p -

öt 

or if only one direction is concerned 

öp öü, 
- -=p 

ör öt 

solving for u yields 

( 4) 

( 5) 

( 6) 
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r 

:z 

Fig. 1 Two microphone measurement set-up 

Using a measurement probe consisting of two closely spaced pressure 

microphones (fig.1), the pressure gradient in the direction (r) can be 

approximated by 

6p ( 7) 
6r Llr 

Llr: microphone separation distance Similarily the pressure at the point 

midway between the microphones can be approximated as 

p= ( 8) 

Substituting (8),(7),(6) in (1) yields following equation for the 

acoustic intensity in the direction r 

I f T f P1 + P; ( I ) f I,= T 0 ~ -2- ~ (pl-pl)dt 
( 9) 

Transforming to the frequency domain yields followi ng equation for the 



www.manaraa.com

Digital Acoustic Intensity Measurements 

real part of the acoustic intensity 

1 100 I, (reell= - 4 AA 
7r"'"' r -oo 

Im(P1 Pl) df 
f 

where imaginary part of the cross spectrum 

between both pressure signals. 

r frequency 

257 

(10) 

Since the cross spectrum is a standard function, available on most FFT 

analysers, acoustic intensity measurements are easy to implement and no 

longer require elaborate electronic equipment. 

The vector character of the intensity levels implied by equation (10) 

should be emphasized. One measures only the intensity vector component 

parallel to the orientation of the measurement probe. Measuring the 

intensity component in three perpendicular orientations yields the 

spatial intensity vector. Since the spatial intensity vectors form the 

actual data base for the visualisation of the intensity field, a three 

dimensional probe has been developed enabling the determination of three 

components simultaneously. 

HARDWARE 

Quarter inch B&K condensor microphones have been selected as 

transducers for both the one dimensional probe as well as for the three 

dimensional one. Their small size,their stability and their excellent 

phase match are the main reasons for this choice. Those microphones were 

used in combination with the B&K 2618 preamplifiers to boost the 



www.manaraa.com

258 P. Sas 

microphone output signals with 20dB, which enables the use of long 

cables, The microphone spacing is adjustable in accordance with the 

frequency range of interest. The measurement set up is shown in fig 2. 

Microphones 

Fig.2 Measurement set-up 

The three dimensional probe is schematically represented in fig.3, 

and consists of four identical 1/4 inch microphones, geometrically 

arranged in such a way to yield three perpendicular intensity components, 

Fig,3 Schematical view of the 3D measurement probe 
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The X-component of the intensity is given by microphone combination 

(1-2), the Y-component by combination (1-3) and the Z-component by 

combination (1-4). The resulting intensity components do not relate to 

one single point (A), but only approximate the intensity vector in that 

point. The related approximation error, which is function of the 

frequency and of the complexity of the acoustic field, is of the same 

order of magnitude as the approximation error due to the pressure 

gradient approach. The actual realisation is shown in figure 4. 

Fig.4 Three dimensional acoustic intensity measurement probe 

AUTOMATED 3-D ACOUSTIC INTENSITY MEASUREMENTS 

To facilitate the intensity measurements necessary for visualising 

the relation between structural Vibrations and radiated sound, two 
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automatic microphone positioning system have been developed. The first 

positioning system is a so called reetangular coordinate robot with four 

degrees of freedom: x,y,z translation and one rotation of the wrist 

(f1g.5). The robot is driven by the processor of the FFT analyser, as a 

result robot control and measurements are managed by the same processing 

unit. 

Fig.5 View of the positioning robot 

Due to its limited x,y,z range (100x80x50cm), this robot is mainly 

intended for research applications. For example the resonant near field 

patterns of various vibrating plates, randomly excited with white noise, 

and other small sources have been measured with this robot. 

The second robot (f1g.6) was specially designed for the analysis of 
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larger sources. It is a reetangular coordinate robot with three degrees 

of freedom (x,y,z translation) intended to scan large surfaces such as 

the body of a car, or a machine tool. It was designed for easy 

assembling and disassembling in site. 

Fig.6 View of the surface scan positioning robot 

SOFTWARE 

The cross spectrum calculations and the other calculations related 

to equation (10) are carried out on a four channel Fast Fourier Analyser 

with post processing capability (HP 54518). The software tmplemented 

consists of two main packages, the measurement package and the analysis 

.package. Each package is designed around a monitor, which adresses 

several modules (input, output, display, clculations, robot control, 



www.manaraa.com

262 P. Sas 

initialisation ••• ). An octave band option has been included in the 

intensity calculation module to determine the intensity levels in octave 

or third octave bands. The software can handle up to 750 cross spectra 

contineously, allowing the calculation of the spatial intensity vector in 

250 measurement points, for up to 30 single frequencies. Dedicated 

graphic software has been developed for representing those intensity 

vectors, yielding animated intensity patterns or intensity contour plots. 

ERRORS INVOLVED IN ACOUSTIC INTENSITY MEASUREMENTS 

The frequency band suited for unbiased intensity estimations depends 

upon the microphone spacing. As pointed out by several authors this is 

by far the most stringent limitation of the acoustic intensity method. 

Fora given phase mismatch (e) between both measurement channels the 

normalized bias error (c) can be estimated by means of the following 
r 

equation : 

where 

E(l,)- I, 

I, 

8c 

2rrL:l r 

E( I ) 
r 

intensity estimation 

( ll) 

For example if one allows a bias error of .5 dB with a microphone spacing 

of 20.5 mm and with a phase mismatch of .5 degrees, the lower frequency 

limit will be 360Hz. 'fo minimize this bias error a correction procedure 

has been introduced which consists of a multiplication of every measured 

cross-spectrum with a previously recorded calibration spectrum. The 



www.manaraa.com

Digital Acoustic Intensity Measurements 263 

calibration spectrum is the inverse of the frequency response function 

between the two microphones. This is a far more elegant and less time 

consuming procedure than the earlier proposed measurement circuit switch 

as practiced by Chung 1 1 

The higher limit of the unbiased frequency range is also dependent 

upon the microphone spacing due to the approximation of the sound 

pressure midpoint both microphones. The related bias error can be 

written in terms of frequency and microphone spacing if one expresses 

equation (10) in Taylor-series, supressing the higher order terms yields 

the following equation : 

EU,)- I, 

I, 
(12) 

For example if one allows a bias error of .5 dB for a microphone spacing 

of 20.5 mm, the maximum frequency will be 2342Hz. 

Other important bias errors which may not be neglected, are those caused 

by the digital signal processing, the most important are aliasing and 

leakage. 

VERIFICATION EXPERIMENTS 

Verification experiments were conducted to verify the accuracy of 

the measurement procedure and to demonstrate it's feasibilty. The 

measurements were conducted in an anechoic room using a reference source. 

The reference source was fed with white noise ranging from 0 to 5000Hz 
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and the microphone separation distance was 20mm. The difference between 

the intensity levels based on pressure readings, and the intensity levels 

recorded with the pressure gradient method, is represented in fig.7. 
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Difference between standard far field measurements and 
acoustic intensity measurements 

The measurements have been conducted with and without phase 

correction. Th.e resul ting error levels clearly illustrate the 

limitations imposed by by the instrument phase mismatch (low frequency 

error), and by the finite difference approximation (high frequency 

error). The proposed phase correction procedure proves tobe efficient 

since the low frequency error is drastically reduced when applying phase 

correction, 
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APPLICATIONS 

The most Straightforward applications of the intensity measurement 

technique are those were one uses the technique as a diagnosis tool to 

determine the sound power radiated by the various components of a larger 

noise source (source ranking). Such applications are beyond the scope of 

this paper where we will concentrate on the grafic representation of the 

intensity patterns. 

Since long, attempts have been made to visualize the sound patterns 

in order to gain some insight in the noise radiation mechanism. 

Ingenious equipment resulted from those attempts, such as the one 
I ~ 

described by W.E.Kock. It basically consists of a pressure microphone 

which is continuously moved through the area of interest. An electric 

lamp mounted on top of the microphone is fed with the amplified 

microphone output, and translates the pressure variations into brightness 

variations. The brightness pattern is photographically recorded. 

Unfortunately this technique does not present a quantitative result. It 

is time consuming and requires a special dark room and yields only two 

dimensional patterns. 

INTENSITY PATTERN OF A SIMULATED DIPOLE 

To illustrate the power of the proposes intensity measurement 

technique, the radiation pattern of a simulated dipole has been measured. 

The acoustic dipole has been simulated by a pair of loudspeakers fed with 

signals of equal amplitude but opposite sign. 
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Fig.8 Measured intensity patterns for opposite phased loudspeakers 

The intensity vectors have been measured in planes parallel and 

perpendicular to the baffle plane. The signal fed to the loudspeakers 

was a saw-tooth like signal to generate sufficient harmonic components. 

For each of the harmonic components the intensity pattern was determined. 

The measurements were carried out twice, once with both loudspeakers in 

phase, and once with both loudspeakers in opposite phase. 

Some of the results are shown in fig.8 for the plane perpendicular 

to the baffle. The separation distance between both loudspeakers was 

10om. Those intensity patterns clearly illustrate the hydrodynamical 

short-circuit. At 264Hz the short-circuit is most pronounced, showing 
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that, for this frequency, the air partiales do escape compression by 

moving out of the way laterally to the second loudspeaker, which is 

vibrating in opposite phase. At higher frequencies, for example 998Hz 

the sound wave is not fast enough to interfere with the other pole. No 

lateral sound energy leakage occurs and all acoustic energy is 

transmitted into the far field. 

It has to be remarked that the intensity amplitudes are plotted on a 

linear scale. Moreover the concerned intensity levels represent by 

definition the time avarages of the actual intensity over one period, and 

not the momentary amplitudes. For a perfect dipole the average intensity 

over one period should be zero at those points where hydrodynamical short . 

circuit occurs, since the lateral leakage of acoustic energy is equal in 

both directions. The reason why the intensity pattern of fig.8 still 

shows a clear leakage of acoustic energy from one loudspeaker to the 

other, is the difference between both loudspeakers. Indeed, they were 

not, as was falsely assumed, identical and radiating equal acoustic 

power. Their respective internal resistance was 10.7 and 11.8 Ohm, 

yielding a difference of 10% for the radiated sound power. Consequently, 

the leakage of acoustic energy no longer is symmetrical and a residual 

energy transfer from the largest pole to the smaller one can be 

visualized. 

INTENSITY PATTERNS OF VIBRATING PLATES 

The acoustic radiation behavior of vibrating plates is of special 

interest sinoe plates are a ourrent component in mechanical structures. 
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In platelike structures it is important to know the impact, on the 

radiated sound power, of parameters such as the plate geometry, the plate 

material, additional damping or stiffning ribs. Although several 

theoretical studies can be found in literature on this subject, few real 

configurations are treated and one has to fall back on experimental 

results. For such measurements the intensity technique is the ideal 

tool. 

When dealing with the radiation of platelike structures, one often 

introduces the notion radiation efficiency. This parameter, which varies 

between 0 and 1, is defined as the ratio between the soundpower radiated 

by .a noise source and its potential source strength. 

where 

a= 
w 

pcSv2 

S : Size of the vibrating surface 
v : rms value of the average surface velocity 
W: radiated so und power 
a : radiation efficiency 

(13) 

The potential source strength is equal to the sound power radiated by a 

rigid piston of the same surface size and average velocity as the 

original source. The measurement of the radiation efficiency for a 

vibrating platelike structure is based on a subsequent or simultaneaous 

acquisition of both surface velocity and acoustic intensity. The 

acoustic intensity is measured using the surface scanning method, while 

the surface velocity is measured with an acceleration transducer 

(accelerometer). The accelerometer is positioned in a limited number of 

points randomly chosen on the surface. 
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Fig.9 Influence of thickness on the radiation efficiency of plates 

A series of measurements has been carried out in order to classify 

the radiation efficiencies for a number of typical plate configurations. 

The influences of plate thickness and various stiffening ribs on the 

radiation efficiency have been experimentally verified using the 

described measurement procedure and have been summarized in a catalog, 

which can be consulted by designers. 

Some of the results are represented in fig.9. They clearly show 

that stiffening the plate increases the radiation effioienoy. The 

estimation of the radiation effioienoy alone is not suffioient to explain 

the radiation meohanism, it has to be interpreted together with the 

oorresponding intensity patterns. For that purpose the intensity pattern 

of various free/free plates, randomly exoited with white noise, has been 
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measured using the intensity measurement robot (fig.5). One of the 

resulting intensity patterns, namely those of a rectangular, free-free 

suspended plate at 292Hz is shown in fig.10. On this representation the 

intensity patterns, normal and parallel to the plate, as well as the 

deformation pattern are shown. The intensities have been measured in two 

planes: one parallel, and one normal to the plate. Especially on the 

intensity patterns, parallel to the plate, the acoustic short-circuit is 

clearly marked by the leakage of acoustic energy from and to areas of the 

plate which are vibrating in opposite phase. The acoustic leakage is 

concentrated around the nodal lines. This was expected since they form 

the boundary between opposite phase areas. 

Fig. 11 Measurement set-up for the diesel engine oil-sump 
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The close correlation between the modal deformations and the near 

field intensity component normal to the plate is remarkable and clearly 

illustrates the fact that some areas of the plate act as sources while 

others are sinks. This agrees with theory since, taking into account the 

dtmensions of the plate (700XSOOmm), the considered resonance frequencies 

are rar below the critical frequency. Moreover since the plate is 

free-free suspended, acoustic short-circuit occurs around the edges or 

the plate. This is the reason why, as can be noticed on fig.10 the 

normal intensity is much smaller on the edges than one might guess taking 

into account the modal deformations or the edges. 

INTENSITY PATTERNS OF AN OlL SUMP 

The near field intensity patterns of the oil sump of a truck diesel 

engine have been measured, together with the vibration pattern, in order 

to determine the relation between structural Vibrations and radiated 

sound for such a structure. The oil sump was free/free suspended and 

excited with white noise, the measurements were conducted with the 

intensity measurement robot (fig.11). 

Two of the resulting intensity and velocity patterns are shown in fig.12 

and 13. The velocity pattern of 380.86 is characterized by a symmetric 

first bending of both sidewalls, together with the longitudinal bending 

or the rear plane. Although the amplitudes or both bendings are or the 

aame order ot magnitude, the radiated intensities are not. The most 

pronounced radiation is due to the sidewalls and only minor radiation 

activity is noticed at the rear plane. 
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The resonance frequency of 498.28Hz clearly shows an acoustic 

short-circuit between the back plane and the rear plane. The acoustic 

energy radiated by the rear plane is partly neutralized by the back 

plane. 

Those results clearly illustrate the use öf the intensity 

measurement technique since conclusions based on the Vibration pattern 

only would have been false. 

INTENSITY PATTERN OF A LOUDSPEAKER BAFFLE 

Another near field radiation pattern which was analysed using the 

measurement robot was a basreflex loudspeaker box. The result, fig.14, 

shows the intensity pattern normal to the front of the loudspeaker box at 

71, 129, and 214Hz. It has to be remarked that in this representation 

the intensity vectors have been plotted in opposite sense to their 

propagation direction, so that they point to the source. Those patterns 

clearly illustrate that the basreflex effect is most pronounced at the 

low frequencies. Indeed at 71Hz the intensity seems to originate from 

the reflex slit, while at 214Hz the intensity vectors indicate the 

loudspeaker as being the most dominant source. 



www.manaraa.com

276 

INTENSITY MAP 

T .. t. ,. 8ASJIEFUX 

~r-ti"''-U.)' 
lt ....... -1. 

F~y• 71.MHa 
Bt-f..u~>~ • 3 Ha 
F,_.. ,..... •• I 1 •• H. 

l X 

r-
,.,.....,._)' . 129. 11KI: 
Qo...d.uh, 3 H:r 

f',..eott ,... ol . 1 1. 01 H• 

Z X ·r.-
F~y• 214 •• H:r 
s..delt.h I 3 H:!: 
F.-.q. ... _ •• I .. . H:r 

Z X 

! 

"''''-'''''''''''''~ ..... ,,,,,,,,,,,,,, 
"'''''\.\\\\\\\\I I 

==r~;.~;_: 
~~ 71Hz 

"' \ \ ' ' ' \ \ I I I I I I 

' ' ' ' '- \ \ \ \ \ I t t r ' ' 

... ... ' ' \ \ \ \ ' \ I I ' ' , ' I 

... ... ' ' \ \ \ \ I I \ I I t ' ' 

... ... ' ' \ \ \ \ \ \ \ I I I t ' 

~'''-'\\\\\ \\ II (' 

==r~:~:.: 
~~129Hz 

t t t t t t t J I I I 1 I ' I 

t ' ' t t + t f I I I ~ 1 J ~ ' 

\ ' I • ' f I I I I ' I I I , 

' ' ' I f I I I I I I I ; ' ' 
' ' \ ~ ~ ~ I I I I I I I I ; , , 

' \ \ I I I I I I I I I I I ' ' ' 

''1\\ll/////1111'' 
''11\ll l////11 '''' 

. :.: ~ ~ i t I J f. f. ~ ~ ~ ~; ~: : 

~.--- 214Hz 

Fig.14 Intensity pattern of a bas-reflex loudspeaker box 

P. Sas 



www.manaraa.com

Digital Acoustic Intensity Measurements 277 

HEFERENCES 

1. OLSON H.F., 'System response to the energy flow of sound waves', u.s. 

Patent No 1.892.644, 1932 

2. CLAPP C.W., FIRESTONE F.A., 'Acoustic Wattmeter', Journal of the 

Acoustical SOciety of America (J.A.S.A), 1941, Vol.28, pp 693-713. 

3. BAKER s., 'An Acoustic Intensity Meter', J.A.S.A., 1955, Vol.27, 

4. VAN ZYL B.G., ANDERSON F., 'Evaluation of the intensity method of 

sound power determination', J.A.S.A., 1975, vol.57, deel 3, 

5. SCHULTZ T.J., 'Acoustic Wattmeter', J.A.S.A, 1956, vol.28, deel 4, pp 

693-697. 

6. STAHEL W., LAHBRICH H.P., 'Developnent of an instrt.ment for the 

measurement of Sound Intensity and its application in Car Acoustics', 

Proceedings of the 53th AES Convention, 1976 

7. FRIUNDI F., 'The utilisation of the intensity meter for the 

investigation of the sound radiation of surfaces', External 

Publication, Interkeller A.G., Zurich 1977. 

8. FAHY F.J., 'A technique for measuring sound intensity with a sound 

level meter', Noise Control Engineering, 1977, vol.9, deel 3. 

9. HAMANN M., 'Untersuchungen zur Schalleistungsbestimmung in der 

Larmbekampfung', Hessen & Prufen/Automatik, 1979, vol.5 

10. CHUNG J.Y., 'Cross-spectral Hethod of Heasuring Acousital. 

Intensity', General Motors Research Laboratories, 1977, Publ. 

GMR-2717 

11. FAHY F.J., 'Measurement of Acoustic Intensity using the 

cross-spectral density of two Microphone Signals', J.A.S.A., 1977, 



www.manaraa.com

278 

vol.62, deel 4 

12. International Congress on Recent Developments in Acoustic Intensity 

Measurements, Senlis (France), 1981, CETIM 

13. SAS P., 'The use of digital signal processing techniques in acoustic 

noise source localisation, including acoustic intensity 

measurements', doct. thesis K.U.leuven, 1982 



www.manaraa.com

MULTIPLE INPUT /OUTPUT ANALYSIS: 
AN IDENTIFICATION TOOL IN ACOUSTICS 

P.Su 
KatboUeke UnJnnJtelt Leunn, Belpum 

SUMMARY 

An overview is given of digital techniques which can be applied to 

analyse acoustical multiple input/output systems. The overview includes 

frequency domain as well as time domain techniques. The merits and 

limits of techniques such as correlation, coherence, and transfer 

function analysis when applied to source localization and transmission 

path identification problems will be discussed. Recent techniques such 

as partial and virtual coherence or structural inverse filtering (force 

identification) have been included in this survey. 
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INTRODUCTION 

A large number of noise problems, especially those where structure borne 

sound is involved can be viewed as multiple input/output problems. 

Indeed when analysing noise problems one is orten confronted with the 

situation where several sources contribute to the sound power that has to 

be reduced. In such cases it is essential to determine the relations 

between every source and the output, even when the sources are mutually 

dependant. To enable efficient noise control actions the contributions 

from the acting sources must be ranked and the noise and vibration 

transmission paths from every input to the output identified. Multiple 

input/output an~ysis can be a valuable aid for such an analysis but 

should be used in combination with other techniques. 

An example will illustrate the principles of multiple input/output 

analysis. consider the situation where one intends to analyse, for a 

rear wheel driven car, the contribution of the rear axe to the noise in 

the passenger compartment. Besides the wheels, which are important 

Vibration sources connected to the rear axe, the rear axe itself contains 

several Vibration sources (wheel bearings, gears and bearings of the 

differential ••• ) which are potential sound contributors. Identification 

and ranking of those Vibration sources is the first task of the multiple 

input/output analysis. The rear axe, excited by those vibration sources 

will radiate noise that, depending on the sound barriers between source 

and receiver, will be transmitted inside tQe passenger compartment. The 

rear axe Vibrations itself have a wide chpice of transmission paths to 
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re~ch the body and generate noise at the receiver point (springs, 

dampers, tr3nsmission axe, torsion bar •••• ). Identification and ranking 

•)f the transmission paths is therefore the secend task of the multiple 

i'lp•Jt.!output 'lnillysis. 

e 1 • ~· h\1 ;_; ---:~ 

~ ,'/ 

n 

y 
~-,----., / 
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\ ' 

~~r--h.,..--,~n ~ 
Fig. 1 Schematical representation of a multiple input-output problem 

A grafical representation of this multiple input/output problem is 

given by the scheme of fig.l, which is characteristic formostmultiple 

inputloutput problems. In this diagram H· . 
1) represents the frequency 

response function that characterises the transmission path between source 

( 1) and receiver ( j) • Remark that a series of intermediate 

source/receivers Xi has been defined, such that the original problem is 

splitted up in one multiple input/multiple output problem 

(sources/connection points) where the connection points act as receivers, 

and in on one multiple input/single output problem (connection 
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points/inside noise) where the connection points act as sources. 

The state of the art approach to analyse such a multiple 

input/output problem consists of applying the 'Decoupling (striptease) 

Method', where the possible noise sources are physically eli~inated one 

at a time. The car is therefore installed on a special test bench where 

each of the rear wheels can be driven independantly, one would then 

systematically disconnect or neutralize (cladding or encapsulating) all 

sources and transmission paths except one, drive one wheel and conduct a 

sound measurement at the receiver point to determine the contribution of 

the active transmission path or source. 

This method is time consuming and tedious, requiring sophisticated 

test set-ups and rig-fixtures to simulate the real world drive conditions 

as close as possible, which is not easy and orten impossible to realise. 

Even then the results may be misleading since the underlying assumption 

of linear Superposition is not fulfilled. Especially in the low 

frequency range the phase relation between the sources and/or 

transmission paths is important, different source inputs may indeed 

cancel or add up. 

Therefore a need exists for methods, allowing the identification of 

noise sources and transmission paths, without physically interfering with 

the the normal function or construction of the vehicle, and analysing all 

sources simulteneously. The following paragraphs give an overview of 

multiple input/output analysis techniques which attempt to realise this 

goal 
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REVIEW OF COHERENCE ANALYSIS 

Coherence functions are potentially very attractive for energy source 

identification. 1 They are able to attribute percentage of output energy 

to individual ~easured system inputs enabling for example the ranking of 

the sources. Practically, however, coherence techniques are limited by 

several factors. In most real machinery, for example, either the real 

sources are unknown or cannot be measured directly. Thus, measurements 

usually occur on the transmission path, as close as possible to the 

original source, consequently contamination by the energy from all the 

sources cannot always be avoided. Secondly the classic coherence 

techniques are derived for non-deterministic (non- coherent signals) such 

that for cases where coherence exists between the inputs improved 

coherence techniques such as partial or virtual coherence must be used. 

Partial coherence is based on the calculation of conditioned power 

spectra, this conditioning however assumes a specific system model, which 

is not known a priori, this often limits the applications of the partial 

coherence technique (ref.2,3,6). Hore information on the system model 

can be gained from a linear transformation technique based on a singular 

value decomposition yielding 
~ 

the principal sources of the system or the 

virtual coherence: The mentioned coherence techniques will be briefly 

discussed in this paper, for more details and examples, we refer to the 
2 l 6 

references. 1 1 



www.manaraa.com

284 

Ordinary Coherence Function 

The coherence function indicates which fraction or the output power 

is due to source (i). The coherence function has wi1e applications in 

the field Of digital Signal processing, 

in the error analysis of frequency 

as indicated by its applications 

response measurements. Another 

important application related to source identification is the cal~ulation 

of coherent output power spectra, and the ranking of sources. 

The ordinary. coherence 

identification is only valid 

This is generally the case when 

structurally not connected. 

structurally interconn ected 

function, when applied to 

for independant (non-coherent) 

source 

sources. 

dealing with mechanical systems that are 

However, when dealing with sources in a 

system, such as combustion engines, the 

dynamic response at a given point is likely to be related to a number of 

sources. In that type of problem teh ordinary coherence fucmtion will 

give erroneous results. 

Multiple Coherence Function 

The multiple coherence function is defined as the coefficient 

describing the causal relationship between the output and all considered 

inputs. In source identification applications, it is used in combination 

with ordinary and partial coherence functions to to judge the consistence 

of the input signals. A poor multiple coherence indicates that some 

important sources have been overlooked when defining the inputs. The 

multiple coherence is therefore the function that must be evaluated 



www.manaraa.com

Multiple Input/Output Analysis 285 

first, before proceeding to any further analysis. 

Partial coherence function 

The partial coherence is defined as the ordinary coherence between a 

conditioned input and the conditioned output. The conditioning consists 

of removing from the considered input and the output the potential 

contributions from other inputs. According to Bendat&Piersol the 

conditioning can be formulated on a linear least square basis where the 

order of the coherent signals has to be specified by the investigator. 

This implies that one has to define which sources are the contaminators 

and which the contaminated. The problern which arises when interpreting 

partial coherences is the fact that they do not relate to physical 

sources, but to conditioned inputs. It is therefore impossible, using 

partial coherence functions, to determine the absolute contribution of 

each physical source to the input, it is only possible to attribute 

energy from conditioned inputs to the conditioned output. One of the 

limitations of the partial coherence technique is the fact that numerical 

problems occur when two or more inputs are fully coherent. 

Virtual coherence functions ~. 5 

Since the numerical problems, which arise in the case of coherent 

sources, are due to the singularity of the input matrix, it has been 

proposed to use mathematical techniques that detect and remove linear 

dependancy between elements without requiring an initial erdering of the 

inputs. The transformation of the input matrix G to its principal 
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values is such a technique, originating from statistical analysis 

techniques and also known as principal component or singular value 
7 

decomposition. Applying the singular value decomposition to the input 

matrix [Gxxl (Hermetian and positive semi-definite) yields. 

H 
[G ] = [V] [G ) [V) 

XX XX 

where superscipt H denotes the Hermetian transpose of the vector or 

matrix it modifies. [V ] is a unitary matrix composed of the eigenvectors 

of [G>eeJ, and [Gxx ] is diagonal matrix with as diagonal elements the 

eigenvalues of [Gxx ] in descending order. Those eigenvalues are the 

principal or singular values or the input matrix [G>eeJ. If (r) is the 

rank of the ( nxn) input matrix [ Gxx ], then ( r) eigenval ues and hence ( r) 

singular values will be found. If r<n then (n-r) of the singular values 

are zero, or the (n) original inputs are reduced to (r) 'virtual' 

uncorrelated inputs. The auto-power spectrum of those inputs is given by 

the diagonal elements of the[ Gxx] matrix, which can be calculated for 

all frequency points. This implies that for each frequency point an 

eigenvalue problem must be solved, fortunately the eigenvalue solution is 

real since the input matrix [Gxxl is Hermetian. 

Both the number of virtual inputs and the auto-power spectrum of 

those virtual inputs are valuable information when analysing a multiple 

input problem. The concept of virtual components can be extended to the 

cross spectrum vector and the frequency response matrix thereby enabling 
5 

the calculation or virtual coherences. The virtual coherence 

indicates the contribution of the virtual source mechanism (i) to the 
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signal measured at the output. 

Value and use of the coherence functions 

In conclusion then the principal value decomposition is usefull ror 

reducing a system of n inputs (coherent or not) to a system or (r) 

incoherent (virtual) inputs. In cantrast to the partial coherence 

technique the calculation of the virtual coherence requires no ordering 

of the inputs and still generates a valid solution if two or more inputs 

are 100~ coherent. However, as was the case ror partial coherences, the 

interpretation of the virtual coherence is not always straightforward, 

since the link between the monitored sources and the virtual sources is 

not known; nor is the information resulting rrom the virtual coherences 

always relevant. 

An example will illustrate those problems. Assume, that on a 

passenger car, one wants to determine the Vibration energy transmitted 

from engine to body through each of the engine mounts. This can be done 

by measuring and analysing the Vibration of the mounts simultaneously 

with the interior noise. It is obvious that the only independant 

Vibration source is the engine itself, consequently the input Vibration 

signalswill be higly coherent (up to 100J). This can easily be be 

verified by calculating the ordinary coherence functions. In such a 

situation partial coherences will numerically fail and virtual coherence 

analysis will detect one obvious virtual source, the engine, but will not 

yietd more insight in the vibration energy transmission mechanism. 
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FORCE IDENTIFICATION (STRUCTURAL INVERSE FILTERING) 

A technique that potentially could solve the energy transmission problern 

mentioned in the preceding paragraph, is the so called force 

identificaion or structural inverse 
8 I 9 I 1 0 

filtering technique. Knowledge of 

the acting forces and input loads on machinery components would indeed be 

useful when solving structural dynamic problems, related to source and 

transmissign path identification or fatigue life prediction. 

The direct measurement of those forces or loads is in principle 

conceivable using force transducers and/or strain gauges, but in practice 

the mounting of those sensors will be often very cumbrous or even 

impossible. It is therefore much more attractive to measure the 

Vibrations resulting from these dynamic forces, and use this information 

to extrapolate the acting forces. However, Vibrations measured in one 

point are necessarily influenced by all acting forces which are 

conditioned by the respective transmission paths. It is therefore 

necessary to use a transmission path model to derive the forces from the 

measured Vibrations. In the frequency domain the frequency response 

matrix between input (forces) and output (Vibrations) can be used as 

model since they characterise the transmission paths. In matrix notation 

the input/output relations for a linear system between the input vector 

( forces, {F }) and the response vector { y} can be written as 

{ Y }= [ H ] { F } (l) 

where[ H ]is the frequency response matrix. Since the frequency response 
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is a structural characteristic independant from the excitation mode, the 

matrix ~ H: can can be measured, in laboratory conditions, by articially 

excitating the structure in each input point, and measuring all the 

responses. Once[ H ] is determined, the acting forces can be calculated 

on the basis of vibrations measured during field operation, by inverting 

the [H ; matrix. 

-· { Fl = [ H ] { Yl (2) 

In principle this procedure is an attractive solution to determine the 

acting forces, but in practice some problems limit the applicability of 

this method : 

1) The measurement of the [ H ] matrix requires the excitation of the 

structure in three directions for each point where the acting forces 

must be defined. This is often a difficult, if nor impossible, 

procedure which requires a partial disassembling of the structure. In 

that case the boundary conditions are different from the real life 

situations, a fact that must be taken in account when interpreting the 

results. 

The nurober of measurements, necessary to determine the H matrix can 

be considerably reduced if one uses modal synthesis techniques. 

Indeed using the modal parameters (eigenvalues and eigenvectors), 

which can be derived from one column or row of the H matrix, it is 

possible to synthesize all the other rows or colums or the H matrix. 

2) The second problem relates to the numerical restriction inherent to 
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the inversion of the [ Hl matrix. Indeed at the structural resonance 

frequencies the [H] matrix tends to be singular, especially for 

sharply pronounced (lightly damped) resonance frequencies. For those 

frequencies no inverse matrix exists. 

The numerical problems related to the singularity of the [H j matrix at 

particular frequencies can be overcome in two ways 

1) Avoiding the matrix inversion by describing the system in dynamic 

stiffness, rather than in dynamic flexibility form. This flexiblity 

matrix [K J can be directly measured by inverting the system in- and 

output signals. 

= (K J {X l (3) 

This evidently simple technique has the drawback not to allow the 

modal transformation, such that synthesis of the flexibility matrix 

based on one row or column is not possible, hence the flexibility 

matrix must be determined completely by measurements which is a highly 

laboriuos procedure. 

3) The singularity can also be overcome by using the pseudo-inverse 

technique, this means that instead of solving (n) unknown variables 

(forces) out of a system of (n) equations (Vibration measurements), 

one overdetermines the system by including redundant response points. 

This system can be solved using a complex least squares approxtmation. 

The pseudo--inverse matrix that is calculated using this method is a 

full rank pseudo inverse, and it~ accuracy is dependant on the choice 
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of the redundant response points. A more robust technique to 

calculate the pseudo-inverse, which yields at the same time an 

estimation of the rank of the [ H ]matrix, is the singular value 

decomposition which has been described in the preceding section. 

CONCLUSIONS 

An overview has been given of signal processing techniques which can 

be applied to analyse acoustic multiple input/output problems. Hany 

acoustic problems, especially those related to structure borne noise, 

can be reduced to multiple input-output problems, it is therefore 

worthwhile to consider the application of multiple input-output signal 

processing techniques when one is faced with an acoustic problem. 

Especially techniques such as virtual coherence and structural inverse 

filtering are promessing, but still in their research phase, such that 

more research and field applications are still necessary before those 

techniques can be widely applied. 
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STRUCTURAL IDENTIFICATION OF NONLINEAR SYSTEMS 
SUBJECTED TO QUASIST ATIC LOADING 

A. Nappi 
Politecnico di Milano, Milan, Italy 

Introduction 

During the last decade the mathematical methods developed within 
the context of System Identification [1-2] have been applied to the 
so1ution of 'inverse problems' in structural engineering. Most of the 
research activity in this field has primarily concerned dynamic systems, 
with the purpese of identifying, on the basis of experimental data, 
parameters hardly susceptible to be measured directly, such as damping 
characteristics and local stiffness [3-14]. In certain civil engineering 
situations, however, measurements have to be made in static conditions on 
systems which exhibit non-linear behaviour under external actions. An 
interesting example is provided by models concerned with the flexural 
behaviour of reinforced concrete beams under cyclic loading [15]. Another 
case is represented by the parameters related to the local strength of 
rock masses (e.g.: cohesion and friction angle). Suchparametersare 
hardly measurable 'in situ' and sometimes may be estimated through 
nonlinear response measurements [16-17]. Indeed, the application of 
system identification to geotechnical problems seems to be very promising 
and parameter estimation techniques have been the object of remarkable 
research activity [16-22]. This is mainly due to the importance of 'in 
situ' measurements, which can often provide much more information about 
large rock masses than laboratory tests. 

In these notes, attention is given to some aspects of 'inverse• 
problems concerned with systems under quasi-static loading conditions. 
These problems can be described as follows. We consider a discrete model 
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developed for analysis purposes, and we assume that some parameters 
related to the geometry and/or to the mechanical behaviour be unknown. A 
prototype of the system is subjected to convenient quasi-static loading 
conditions and some measurements are taken of meaningful displacements 
and/or rotations. The purpose is now to determine the unknown or 
uncertain parameters included in the mathematical model, on the basis of 
the available experimental data. 

Two general engineering motivations can be found: (i) the 
'calibration' of models with respect to uncertain parameters in order to 
obtain an improved model for design purposes; (ii) the indirect 
assessment of possible local structural changes or darnage which might not 
be detectable by direct inspections. 

In what follows we will focus mainly on piecewise-linear discrete 
models, which result from reasonable idealizations of structures entail
ing plastic yielding. Weshalldeal mostly with reversible ('holonomic') 
elastic plastic laws. However irreversible phenomena, such as local 
unstressing will be also accounted for by adopting an incremental, 'non
holonomic' theory of plasticity and a Kalman Filtering technique. Namely, 
the topics presented in these notes can be summarized as follows: 

Bayesian estimation of: (i) local strength parameters which 
characterize a nonlinear elastic structure; (ii) elastic moduli and 
geometrical parameters related to a bi-dimensional, geotechnical model. 
As typical of the Bayesian approach, optimum estimates of the 
parameters are derived not only from mean values and convariance 
matrices of measured displacements, but also from initial values of the 
parameters assessed by 'a priori' engineering judgement [23]. 

Estimation of parameters related to the local plastic deformability by 
Kalman Filtering. This technique has been applied in the context of the 
incremental (reversible, 'non-holonomic') theory of plasticity with the 
aim of exploiting sequentially the experimental information gathered 
along the evolution of a system under a history of external actions. 
As such, it appears to fit ideally the path-dependent, irreversible 
nature of plastic structural response and the sequential character of 
the measurements usually performed in a statical test [24]. 

The 
carried 
Milan). 
examples 
Refs. 23 
from the 

study briefly presented here has been part of a research project 
out at the Department of Structural Engineering (Politecnico of 
Specifically, the theoretical background and the numerical 
which follow have been taken without significant changes from 

and 24, where the reader can find further details. Other results 
same project can be found in Refs. 16, 17, 21, 22, 25 - 29. 

A mathematical model in the presence of holonomic piecewise-linear local 
plastic deformability law 

We shall consider only simple elastic-plastic structural models such 
as trusses or beams in bending. The peculiar feature is to exhibit a 
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local (sectional) behaviour with a single generalized stress and strain 
component. However, a much broader class of aggregates of multicomponent 
elements with piecewise-linearized yield surfaces, is implicitly covered 
simply by re-interpretation of symbols [30]. 

The element behaviour is assumed as elastic-plastic with linear 
hardening in the spirit of the holonomic (path-independent, reversible) 
plasticity theory. As well known, in this case only local unstressing may 
cause discrepancy from truly irreversible elastic-plastic constitutions. 
For the present (identification) purposes, the holonomic assumption 
appears to be acceptable and realistic, since the loading process may be 
chosen as proportional. Then, irreversibility manifestations (local 
unstressing) are unlikely to occur or to have significant effects on 
measured displacements. Anyway their occurrence can be checked by means 
of the analysis through the mathematical model. 

The assumed behaviour of the i-th element (say beam section or truss 

member) is shown in Fig.l, where: Qi is the generalized stress; qi the 

generalized strain; Si denotes elastic stiffness, r~ 2 absolute values of 

yield limits - and hardening moduli; A~ and A~ are measures of the 

plastic strains according to each of the yielding modes separately, such 
that: 

(la, b) 

having defined two yield functions q,~ and q,~ as: 

q,~ i H~ Ab Qi - (rl + + ~ 0 (lc) 

q,! - (r~ + H! >-!> - Qi ~ 0 (ld) 

Setting: Hi diag i i T i i !~ i i Ni [ 1, -1], - [Hl, H2], ~i = [rl, r2], = [q,l, q,2], = 

>.: i i (1) = [>.p >.2], Eqs. can be re-written in the following matrix form: -1 

!i= N: Qi i Hi Ai s 0 (2a) - r 
-1 

Ai ~ Q. !: Ai = 0 (2b) 
1 -
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0' 

tl' 

Fig. 1 - Elastic-hardening law for a truss member: specification of 
symbols 

p .. U .. UJ l1.U.IU IU1U1.tU .. q 
2!1 a~ l2CIII 

Fig. 2 - Model of elastic-plastic beam on elastic-plastic foundation 
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This representation 

the description of 

of 

the 

the plastic behaviour has to be supplemented by 

elastic behaviour (pi= ~i ~i being the plastic 

strain): 

Qi Si (q i Ni ~i) = - (2c) 

For H = 0 the element behaviour represented would become (holonomic) 

elastic-perfectly plastic. 
Eqs. (2) can also be written for all m elements (i = l, ••• ,m) 

simultaneously as follows: 

9 ~ g - S N A. A. ~ 0 (3a,b) 

T - H A. ~ 0 (3c) ~ = ~ 9 - E 

~T ~ = 0 (3d) 

For a kinematically determinate trusslike structural model with n 
degrees-of-freedom the compatibility and equilibrium equations read: 

g c u 
T g 9 = Cl ~ (4a,b) 

where ~ and F denote the n-vectors of nodal displacementes and loads, 

respectively; a is a load factor; C is the full-column rank matrix 

depending on the undeformed geometry only (if the "small" deformation~ 
hypothesis applies). 

The relation set (3)-(4) governs the nonlinear response of the 
structure to external loads and represents the mathematical model 
referred to in most of the identification problems to discuss later. 

By using Eqs. (3a) and (4a), Eq. (4b) becomes: 

(5) 

Hence, we can express vector u as the sum of a linear elastic 

E contribution u and of a term due to plastic deformations: 

E u=au +GA. - - - -

having set: 

(6a) 
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E _1 
u - K F (6b,c) 

where ~ = gT § g is the (symmetric, positive definite) elastic stiffness 

matrix of the system. By further substitutions, the following alternative 
set of governing relations in p, ~ only is generated: 

(7a) 

A ~ 0 (7b' c) 

having set: 

E _l 
g : S C K F (7d,e) 

Eqs. (7) represent a 'Linear Complementarity Problem' . By virtue of the 
Karush-Kuhn-Tucker theorem of mathematical optimization [31] it turns out 
to be equivalent to a convex quadratic program [32], as matrix ~ is 

symmetric and positive semidefinite if H~ 2 ~ 0 for all i's (positive 
' definite if all hardening parameters are positive). 

Bayesian estimation of yield limits 

We assume that a test is carried out on an elastic plastic truss
like structure modelled as specified in the preceding Section and that d 

displacements are measured at a single load level ~. 
Measurements are considered as affected by (Gaussian) statistically 

independent random errors with null mean values and known variances. In 

other terms, they are defined by a d-vector ~M of mean values and by a 

covariance matrix C • -u 
The independent parameters to identify, collected in vector ~. are 

those which govern the yield limit distribution defined by vector ! 

through a linear relation: 

r = R P (8) 

where R is a binary 1 selective 1 matrix. Namely, the i-th column of R 

contains unit entries in correspondence to yield limits which are equal 
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(to the same value for technological reasons and contains zero 
entries elsewhere. 

Let the 'a priori' knowledge on the parameters be expressed by a p-

vector ~0 of mean values and by a diagonal covariance matrix ~~.Vector ~0 
is thought of as generated by 'best guesses' resting on engineering 
judgement and previous experience or on any source of information which 
would be used in the absence of system identification; ~~ reflects the 
confidence levels attributed to these values. 

For a hypothetical mathematical model linear in the parameters, we 
would express the computed displacements as follows: 

c 
u L p (9) 

L being a constant matrix depending on the external actions and on the 
system characteristics different from the parametrs ~· If Eq. (9) were 
applicable, it 
estimator of P 

could be shown [33] that the optimal (minimum variance) 
on the basis of the above experimental and 'a priori' 

stochastic information, is given by: 

P = P + M (uM - L P ) -o - - - -o (lO) 

Matrix M in Eq. (10) is a 'mapping matrix' which combines the 

uncertainties of measures c and of initial estimates (Co): -u -p 

M = C0 LT [L C0 LT + - -P - - -P -
c (1 
-u (11) 

The covariance matrix associated to the optimal estimates (10) turns out 
to be [33]: 

Actually, 
displacements 
perturbations 

(12) 

in the model under consideration, the dependence of the 
from the parameters is not linear. However, for small 
around a vector P' of current values for the parameters, a 

Taylor series expansion truncated after the linear terms reads: 

(13) 
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Here ~(!_") represents the 'sensitivity matrix'. It contains the 

derivatives of uC taken with respect to the parameters ~ and calculated 

at ~ = ~·· Vector ~C depends linearly through Eq. (6a) on vector ~. which 

in turn depends on ~ through (7) and (8). For a given assigned parameter 

vector P' the complementarity problern (7) can be solved by some standard 

quadratic programming algorithm. In the numerical solution of (7) for P 

= ~·. let !' indicate the subvector of all zero ~variables, and .A' the 

subvector of the corresponding .A variables (the only ones which may be 
nonzero). Marking by a prime the corresponding submatrices of ~. ~. g, 
one can writ~: 

! = ~,T gE a - A' .A' - g• ~· = Q (14) 

This equation provides the gradients of the plastic multipliers .A with 

respect to the parameters in the form: 

[ a.A'] = - [~' l-1 R' 

a~T ~· 
(15) 

For hardening models (H>O for all modes) problern (7) has always a 
unique solution and A' is positive definite, so that the matrix (15) 

exists. For the perfectly-plastic idealization (~ = Q), submatrix A' may 

be singular in the following two circumstances: 
(i) the test loading attains the carrying capacity exhibited by the 
structural model for P = P' : then Eq. (14) admits an unbounded set of 

solutions and .A' corresponds to a collapse mechanism; if the carrying 

capacity is exceeded, problern (7) has 
(ii) below collapse there may 
corresponding to configurations in 
(limited or pseudo-mechanism). 

no solution; 
be a bounded set 
equilibrium under 

of solutions, 
the same loads 

By introducing into the model a fictitious hardening of small 
magnitude (say, moduli H 2-3 orders of magnitude smaller than the member 
elastic stiffness S) Eq. (15) can still be used in both above 
circumstances. Computational experience showed that the inaccuracy thus 
generated in the sensitivity matrix generally does not prevent 
convergence nor does it reduce the speed of convergence to the true value 
of E in the iterative procedure which will be adopted later. 
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Let us now introduce a binary matrix B which selects the 

displacements susceptible 
displacements: 

c 
u = B u 

to measurement among all calculated 

(16) 

vector ~ being given by Eq. (6a). Hence, in view of Eqs. (6a) and (16), 

the sensitivity matrix ~(P') in Eq. (13) acquires the simple closed form: 

~(P') 
_ [ aucJ [ auc J [ a.\ • J 

aPT = a.\'T ap•T 
- P' - - P' - -

= B G' A'-l R' (17) 

where, the submatrix G' of g, Eq. (6c), corresponds to the zero

components of ~ in the solution of problern (7) for the current parameter 

vector P'. 

For the present nonlinear model an iterative parameter estimation 
procedure can now be devised on the basis of the above linearizations. At 
each iteration the optimal estimators (10) - (12) valid for the model (9) 
linear in the parameters are applied to the linearized model (13). A 
similar procedure has been used in linear dynamics (see e.g. [4] and 
[5)). The iteration scheme is based on the estimator (10) and (11) in the 
following recurrent form: 

(18a) 

(18b) 

uc(P , P') being defined by Eq.(13). - -o -

The iterative procedure can be described by the following sequence. 

(1) On the basis of the initial vector P of guessed values for the -o 
parameters, solve the analysis problern (7). This provides the 

calculated measurable displacements ~C(~0 ) through (16) and the 

sensitivity matrix L(P ). 
- -o 
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(2) Generate the mapping matrix M(P ) by means of (18b) setting - -o 

L = L(P ) and evaluate the estimates P by means of Eq.(18a), for 
- -o 

P' = p • -o 

(3) Setting P' = ~. solve again the LCP (7) for P = ~·. and thus obtain 

~(~') and uc(P , ~·), through Eq.(13). - -o 

(4) Determine ~(~') by (18b) with ~(~') and compute new estimates P. 

(5) Carry out a convergence test: if there are significant changes 
between the last and the preceding estimates, return to step 3. 

* After termination of the above procedure, say at the estimate ~ , the 

* corresponding covariance matrix ~p is supplied by Eq.(l2): 

(19) 

* * This matrix C associated to the achieved estimates P_ , provides a 
-p 

quantification of the uncertainties affecting them: its main diagonal 
entries represent the new variances of the parameters at the end of the 
iterative process [4]. 

Statistical estimation without prior information - Large variances 
with respect to mean values (i.e. large diagonal entries in the 

covariance matrix C0 ) reflect scarcity of 1a priori' information (prior 
-p 

to the experiments) about the parameters to identify. When the only 
M available statistical data are those provided by the measurements (~ , 

C ), one can specialize the preceding method by a limiting process which -u 
reduces the inverse of the initial covariance matrix for the parameters 

0 -1 
to a matrix with zero entries: [C 1 + 0. Transformins the r.h.s. of -p -
Eq. (18b) by a matrix identity [2] and passing to the limit, the mapping 
matrix becomes: 
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(20) 

The covariance matrix of the final estimates, given by Eq. (19), 
acquires the form: 

* c -p 
(21) 

In this 
vector P -o 

situation of uncertain a priori knowledge the initial guessed 
plays the role of initialization vector and has, at least in 

* principle, no influence on the resulting end estimates P • In fact, 

substitute into 

mapping matrix 

Eq.(l8a) the latter of the expressions (20) for the 

and Eq. (13) for uc(P , P'). Thus Eqs. (18), to be used - -o -
recurrently in the iterative procedure, reduce to: 

(22) 

which is equivalent to the result provided by the generalized least 
square method [2]. 

Numerical test with a piecewise-linear model - The above approach 
has been tested by considering the model of an elastic-plastic beam on 
elastic-plastic foundation shown in Fig. 2. ThP. beam model is made of 24 
elastic-perfectly plastic hinge elements, while the foundations are 
represented by 26 elastic-perfectly plastic springs with no-tension 
capacity (unilateral support). The lower yield limit of the springs P1 

and the common absolute value P2 of the flexural yield limits of the 

hinges, are regarded as unknown parameters. 
We consider simulated experiments. These are carried out by 

computing a set of displacements through a given structural model and by 
using such displacements as fictitious 1measured data 1 for parameter 
estimation. Clearly, in this way modelling errors are ruled out at all. 
The 1 measured 1 displacements have been generated by assuming as 1 true 1 

values of the parameters P1 = 1.6 KN, P2 = 1.25 KN m and setting F6 = F11 

= 6 KN, F21 = 8 KN for the external loads. As shown in Tab. 1, several 

sets of fictitious measurements have been considered; a single variance 
has been attributed to all measures in each case. Tab. 1 specifies the 
initial and final mean values ant variances of the parameters given by 
the Bayesian identification procedure described above. The number of 
iterations reported in Tab. 1 is referred to the steps after which the 

-4 -4 variations of the estimates have been less than 10 KN and 10 KN m, 
respectively. Details of the 16th and of the 17th case are illustrated in 
Figs. 3 and 4, where the updated values after each iteration are plotted 
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HEASURED VARIANCE INITIAL ESTIHATED INITIAL ESTIMATED 
CASE DISPLACEMENT OF 

LOCATIONS MEASURES VALUE VALUE VARIANCE VARIANCE 

1 5,10,15,20,25 .00001 2.0 1.676 0.01 .00442 
2 5,10,15,20,25 .000001 2.0 1.630 0.01 .00166 
3 5,10,15,20,25 .0000001 2.0 1.607 0.01 .000229 
4 5,10,15,20,25 .00001 1.3 1.589 0.01 .00442 
5 5,10,15,20,25 .000001 1.3 1.598 0.01 .00166 
6 5,10,15,20,25 .0000001 1.3 1.602 0.01 .000229 
7 17 - 21 .00001 2.0 1.663 0.01 .00405 
8 17 - 21 .000001 2.0 1.624 0.01 .00145 
9 17 - 21 .0000001 2.0 1.605 0.01 .000196 

10 17 - 21 .00001 1.3 1.599 0.01 .00393 
11 17 - 21 .000001 1.3 1.603 0.01 .00144 
12 17 - 21 .0000001 1.3 1.603 0.01 .000196 
13 19,20,22,23 .00001 2.0 1.662 0.01 .00429 
14 19,20,22,23 .000001 2.0 1.631 0.01 .00218 
15 19,20,22,23 .0000001 2.0 1.607 0.01 .000372 
16 19,20,22,23 .00001 1.3 1.610 0.01 .00411 
17 19,20,22,23 .000001 1.3 1.605 0.01 .00218 
18 19,20,22,23 .0000001 1.3 1.603 0.01 .000372 

a) 

MEASURED VARIANCE INITIAL ESTIMATED INITIAL ESTIHATED 
CASE DISPLACEMENT OF 

LOCATIONS HEASURES VALUE VALUE VARIANCE VARIANCE 

1 5,10,15,20,25 .00001 1.5 1.183 0.01 .00380 
2 5,10,15,20,25 .000001 1.5 1.223 0.01 .00142 
3 5,10,15,20,25 .0000001 1.5 1.224 0.01 .000196 
4 5,10,15,20,25 .00001 .95 1.257 0.01 .00380 
5 5,10,15,20,25 .000001 .95 1.251 0.01 .00142 
6 5,10,15,20,25 .0000001 .95 1.248 0.01 .000196 
7 17 - 21 .00001 1.5 1.191 0.01 .00404 
8 17 - 21 .000001 1.5 1.227 0.01 .00145 
9 17 - 21 .0000001 1.5 1.245 0.01 .000212 

10 17 - 21 .00001 .95 1.248 0.01 .00426 
11 17 - 21 .000001 .95 1.245 0.01 .00155 
12 17 - 21 .0000001 .95 1.245 0.01 .000212 
13 19,20,22,23 .00001 1.5 1.193 0.01 .00477 
14 19,20,22,23 .000001 1.5 1.218 0.01 .00243 
15 19,20,22,23 .0000001 1.5 1.243 0.01 .000415 
16 19,20,22,23 .00001 .95 1.230 0.01 .00505 
17 19,20,22,23 .000001 .95 1.245 0.01 .00243 
18 19,20,22,23 .0000001 .95 1.247 0.01 .000415 

b) 

Tab. 1 - Results obtained with elastic-plastic beam: (a) estimation of P1 
(limit compression expressed in KN); (b) estimation of P2 (yield 

limit expressed in KN m). 
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Fig. 3 - Parameter estimates for case 16 (dashed lines) and case 17 
(solid lines) of Tab. 1 
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along with the relevant variances; in the figures, dashed lines are 

referred to the 16th case (C = diag [10-5 m2]). As well expected in a 
-u 

Bayesian inference context, one observes in Tab. 1 that the discrepancy 
between actual and estimated parameters decreases, at equal prior 
information, as the variance of the measures (i.e. the uncertainty of the 
experimental information) decreases; in fact, the influence of the 
analyst 1 s initial assessment on the final results becomes less and less 
significant. Tab. 2 illustrates limit Situations of lacking prior 
knowledge on the parameters; these cases have been dealt with by the 
specialized iterative procedure described in the preceding Section. As 
expected, in such situations the identification process always converges 
to the true values of the parameters. The number of iterations reported 
in Tab. 2 has been obtained by using the same convergence criterion (or 
tolerance) given above for the Bayesian estimation procedure. Numerical 
tests have shown that by increasing standard deviations of the initial 
parameter estimates, we obtain final values which tend to reproduce the 
measured response. Conversely, if more credit is given to the 1a priori 1 

guess by associating small variances to the initial parameters, final 
estimates do not differ much from the initial values. For details see 
Ref. 23. 

Bayesian estimation of parameters concerned with an elastic bi
dimensional system - The same concepts discussed in the previous Sections 
have been applied also to a geotechnical system and the following 
identification problems have been solved: 
(i) the finite element model of a lens included in a layer of homogeneaus 
rock is considered (Fig. 5). Under the hypothesis of linear elastic 
behaviour, different values of Young 1 s moduli are assumed for the layer 
and the inclusion. A test is simulated by imposing a parabolic load 
applied along the surface and vertical displacements are calculated at 
the 20 points shown in Fig. 5. These displacements have been assumed as 
'in situ• measurements, with the aim of estimating the elastic moduli E1 
and E2 of the layer and of the inclusion, respectively. The identifica

tion process has been exactly the same as before. The only remarkable 
difference consists in the fact that the sensitivity matrix has been 
evaluated numerically. Results are reported in nondimensional form in 
Tab. 3, where starred symbols denote true values. 
(ii) In a second set of tests the inclusion length and its distance from 

* * . a fixed vertical line (parameters b and d in Fig. 5) have been estimat-
ed, while elastic moduli have been assumed as known. Again, derivatives 
have been computed numerically. Some results are given in Tab. 3. 

It is worth noting that the same parameters have been estimated on 
the basis of a deterministic approach [22] by generating random ficti
tious measures with given mean values (corresponding to the 'true' 

* * displacements, as computed on the basis of the actual parameters E1, E2, 

* * b , d ). It is interesting to observe that the scattering of the 
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MEASURED VARIANCE INITIAL ESTIMATED ESTIMATED 
CASE DISPLACEMENT OF 

LOCATIONS MEASURES VALUE VALUE VARIANCE 

1 5,10,15,20,25 .00001 2.0 1.603 .02389 
2 17 - 21 .00001 2.0 1.603 .02047 
3 19,20,22,23 .00001 2.0 1.602 .04034 

a) 

MEASURED VARIANCE INITIAL ESTIMATED ESTIMATED 
CASE DISPLACEMENT OF 

LOCATIONS MEASURES VALUE VALUE VARIANCE 

1 5,10,15,20,25 .00001 1.5 1.247 .02047 
2 17 - 21 .00001 1.5 1.247 .02216 
3 19,20,22,23 .00001 1.5 1.248 .04501 

b) 

Tab. 2 - Results obtained with elastic-plastic beam without •a priori 1 

information on parameters: (a) estimation of P1 (limit 

compression expressed in KN); (b). estimation of P2 (yield limit 

expressed in KN m). 
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element model (b) 
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INITIAL VALUES INITIAL VARIANCES ESTIMATES FINAL VARIANCES 

0 * 0 * Co/E*2 Co/E*2 * * *2 *2 
CASE E1/E1 E2/E2 E/E1 E2/E2 CE/E1 CE/E2 E1 1 E2 2 1 2 

1 0.917 1.500 .00698 .14063 0.985 1.024 .00091 .00282 
2 0.917 1.500 .00310 .06250 0.972 1.048 .00075 .00264 
3 0.917 1.500 .00078 .01563 0.937 1.124 .00039 .00209 
4 0.917 1.500 .00310 .06250 0.937 1.124 .00157 .00835 
5 1.083 0.500 .00310 .06250 1.029 0.956 .00084 .00203 

INITIAL VALUES INITIAL VARIANCES ESTIMATES FINAL VARIANCES 

CASE b0 /b* d0 /d* Co/b*2 
b 

Co//2 
d b/b * * c /b*2 c t/2 d/d b d 

1 0.690 0.952 .02778 .02778 0.948 0.998 0.00498 0.00009 
2 0.690 0.952 .02778 .02778 0.899 0.995 0.00832 0.00043 
3 1.280 0.720 .02778 .02778 1.241 1.005 0.02436 0.00010 

Tab. 3 - Results of Bayesian parameter estimation for the model of Fig. 5 
(upper part: Young 1 s moduli; lower part: geometrical parameters) 
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estimated parameters is about the same (with the Bayesian and the 
deterministic approach), as shown in Fig. 6. Clearly, however, the 
computational effort required by the deterministic esttmation procedure 
is much higher and appears to be non-feasible for large problems. As 
supplementary information, the histograms of the estimated elastic moduli 
and the corresponding log-normal probability density functions obtained 
after 1000 deterministic estimation processes [22] are shown in Fig. 7. 

Yield limit estimation by Kaiman filtering 

In this Section we consider elastic-plastic structural models fully 
allowing for the path-dependent, irreversible nature of plastic 
behaviour. The problern of estimating parameters related to the local 
'plastic' deformability will be investigated in a stochastic context, 
employing the methodology of Kalman filtering [34, 35, 36]. This 
methodology is intended to exploit sequentially the experimental 
information gathered along the evaluation of a system under a history of 
external actions. As such, it appears to fit ideally both the path
dependent nature of plastic structural response and the sequential 
character of the measurements usually performed in a statical test. 

Since the material model is non-reversible, the elastic-plastic, 
quasi-static response of a structure will be computed by considering 
small load increments, say from 'instant' t to t+l of an ordering 
variable or 'time' t. We assume that the unit time-change corresponds to 
a loading step small enough to verify the holonomic (path-independence) 
hypothesis for each individual step. If we again consider piecewise 
linear yield surfaces, it is possible to formulate a Linear 
Complementarity Problem which is formally similar to (7) and is referred 
to a single time step: 

(23a) 

(23b,c) 

where ~t represents the plastic multipliers at the end of step t. Vectors 

6~t+l and it+l are the sign constrained variables which solve problern 

(23). We can also write an expression analogous to (6a): 

(24) 

The parameters to be estimated in the following on the basis of 
experimental information on these displacements, will be yield ltmits 
(the independent ones) included in vector P. 
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The natural 'state variables' of the system are the plastic 
multipliers gathered in vector ~t· The 'state equations 1 which describe 

the system evolution, relate their values at instant t+l to those at t, 
to the parameter vector ~t at t and (though not explicitly indicated) to 

E the change ~gt+l of the elastic stress response to external actions. The 

(time-independent) parameters ~t will be considered as additional state 

variables, thus reducing their identification to a state estimation, in 
the spirit of the 'extended' Kalman filter methodology [34,37]. 
Therefore, the 'state equations 1 read: 

~t+l = ~t 

Here f 

model. 

represents 

Let ~t be 

(25a) 

(25b) 

the functional dependence implicit in the structural 

a vector of experimental data, i.e. resulting from 

measurements at t of meaningful nodal displacements (or rotations) ~t· 

Vector ~t is conceived as a random variable: 

(26) 

In this 1 output equation 1 the 1 noise 1 term ~t represents the measurement 

error. As usual, we assume (denoting by E [•] the expected value): 

(27a,b) 

In other terms, ~t has zero expected value and zero cross-correlation 

between ~t and ~, for any' ~ t ('white 1 noise). The covariance matrix y 
will be a diagonal matrix of (positive) variances, since the measures are 
conceived here as uncorrelated random variables. 

The nonlinear dependence (25a) is linearized around a given vector 

(~t' ~t) by a truncated Taylor expansion of function f: 

(28) 
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The first term on the r.h.-s. represents the distribution of plastic 

strains at instant t+l if the system state at t is identified by (~t·E~). 

Let us turn now to the 1output equation 1 (26). Measurable 
displacements ~t+l do not explicitly depend on the parameters Et+t• but 

only on ~t+1 thr.ough (24). Hence, in view of (2Sa), we obtain: 

(29) 

This can also be linearized around vector (~t• ~t) and the 1 sensitivity 

matrix' becomes: 

(30) 

The derivatives of Eq.(28) and the sensitivity matrix (30) can be 
computed in closed form, by a procedure expounded in Ref. [24] and 
omitted here for brevity. 

We outline below an iterated (Bayesian) estimation scheme which is 
typical of the Kalman filtering technique when applied to nonlinear 
models. 

The iteration procedure for each loading step (or time step) is 
basically the scheme illustrated in the previous section. The 
conceptually new aspect is that the 'a priori' information at each 
loading step consists of the predicted 1 state variables' (plastic 
multipliers and parameters) and of their predicted covariance matrix, as 
computed at the end of the previous step. In other terms the final 
estimates will depend on a sequence of measured data ~t; at each time 

step new measurements are processed and an iteration scheme is employed 
in order to account for nonlinearities. 

(1a) In view of the 1state equations' (25), we define the predicted state 
variables at timet making use of the information at time t-1 (i.e., 
after estimating their values on the basis of measurements ~t- 1 ): 

{ p } { p } 
-t/t-1 -t-1/t-1 = 
A A + f(A , P ) -t/t-1 -t-1/t-1 - -t-1/t-1 -t-1/t-1 

(31) 

(1b) The predicted ('a priori 1 ) covariance matrix of the state variables 
(at time t based on Observations up to time t-1) is given by: 
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W = D W DT 
-t/t-1 - -t-1/t-1 -

(32) 

where D is defined as follows. account taken of Eq. (28): 

p = [-:f- -~ --~i ·] 
- I -
-I-

apT I a>.T 
-t 1 -t 

(33) 

~t-1/t-1 1 ~t-1/t-1 

Note that ~t- 1 /t- 1 is function of ~t- 2/t-2 • ~t-2/t-2 • ~t-l/t-2 • as 
it will be clear below. at point (2b). On the contrary, ~t/t-l is 

function of ~t- 1 /t- 1 • ~t- 1 /t- 1 through matrix (33). 

(2a) Optimal values for the state variables at each time step are given 
by an iterative procedure similar to the scheme considered in the 
Bayesian context: 

{ ~~/t} 
~t/t 

= { !t/t-1} 
-t/t-1 

+ ~t/t-1 

i-1 
(~t/t-1 - ~t /t)} (34a) 

Where i • 1 ••••• vt if vt is the number of subiterations required to 

account for the nonlinearities at step t. As in the previous section 
vt depends upon the tolerance set on the difference between 

i-1 
corresponding terms of vectors ~t/t • ~t/t- 1 in Eq.(34a) is the 
mapping matrix and is defined as follows: 

T T -1 
~t/t-1 • ~t/t-1 ~ l~ ~t/t-1 ~ + Y1 (34b) 

where y is the covariance matrix of the measurement errors and ~ is 

the sensitivity matrix. This can be partitioned by separating the 
derivatives with respect to the parameters from the derivatives with 
respect to the plastic multipliers: 

(34c) 
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Hence, ~t/t- 1 is function of ~t/t through matrix ~ and is function 

of ~t- 1 /t- 1 , ~t- 1 /t- 1 through matrix ~t/t- 1 as shown by Eq.(32). As 

pointed out before, Eqs.(34a) and (34b) are analogous to (18a) and 
(18b). 

(2b) Finally, we must define the •a posteriori 1 covariance matrix ~t/t' 

which expresses the uncertainty of the estimated state variables: 

~t/t = ~t/t-1 - ~t/t-1 ~(~t/t-1) ~t/t-1 (35) 

Since ~t/t- 1 appears in Eq.(35), also ~t/t is function of ~t- 1 /t- 1 , 

~t-1/t-1' ~tlt' 

Numerical tests based on Kalman Filtering approach - The frame and 
the loading condition shown in Fig. 8a, have been chosen in order to make 
some numerical tests. The critical sections at the column ends are marked 
by dashes. The plastic behaviour is depicted in Fig. Sb and is assumed to 
be symmetric. A very small fictitious hardening H is introduced to 
improve the numerical performance of the procedure. The only sectional 
properties accounted for in the analysis are elastic bending stiffness 

2 
EI, and yield limits r. The following values (in KN m and KN m, 
respectively) have been used for the analysis: left column: EI 1 = 2100; 

r 1 = 40; mid column: EI2 = 1050; r 2 = 30; right column: EI 3 = 2100, r 3 = 
40; horizontal girders EI 8400; r = 80. The load has been increased 

from zero up to Fmax = 72 KN (FE= 61.14 being the elastic limit load) 

and then decreased to Fmin = -72 KN. The displacements and rotations 

calculated through the analysis have been considered as measured 
quantities ~· Two displacements are plotted .in Fig. 9, while data and 
main results of the identification process are presented in Tab. 4. 

The following cases have been considered: 

(i) Two measured displacements (u1 , ·u 2 ) 
2 _7 2 

and variance o = 10 m 

corresponding to a standard deviation o = 0•316 mm have been assumed. 
Roughly speaking, this corresponds to a maximum instrument error of about 
± 1 mm; in fact, a Gaussian distribution implies a probability over 99% 
that the error takes a value within the range ± 3o ~ ± 1 mm. The limit 
bending moments P1 , P2 , P3 of the left, central and right columns, 

respectively, are assumed as uncertain parameters. The 1 a priori 1 

information (initial estimated values and standard deviations) are 
reported in Tab. 4. A typical estimation path is illustrated in Fig. 10. 
Each triangle shows the end of a recursive step, when the best estimate 
is found on the basis of the available information at a given load 
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Fig. 9 - Displacements u1 and u2 vs. load in simulated experiment 
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factor. The plot of Fig. 10 is concerned with the yield limit for the mid 
column, R2 • The second column of the Tab. 5 specifies the number of 

iterations required in order to account for nonlinearities at each load 
factor. The subsequent columns indicate the values after processing each 
set of measurements sequentially. The figures in brackets (last three 
columns of the table) refer to the yield modes which are found to be 
active during the identification process. 

(ii) The assumed variances are two orders of magnitude greater than 
before and an increased uncertainty is found in the estimated parameters 
(higher values of their final standard deviations). 

(iii) The error variances coincide with the variances of the first case, 
but the set of 'measured' variables now includes also the rotations 91 

and 82 (i.e., the rotations at the central nodes, as shown in Fig. Ba). 

More available information produces an improvement of the estimation 
accuracy (as expected). Tab. 4 shows that the estimates of the flexural 
strength P2 of the central columns are more accurate than the others, 

since the corresponding variances are much smaller. This is due to the 
fact that the loading process 'activates' a higher number of yielding 

modes related to P2 than to P1 and P3 (see figures in brackets in Tab. 5) 

and, hence, 'more information' concerning P2 than P1 and P3 is available 

and processed in the identification procedure. 
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APPLICA TIONS IN CIVIL ENGINEERING: 
MODAL PARAMETER IDENTIFICATION OF AN OFFSHORE PLATFORM AND 

IDENTIFICATION OF THE AERODYNAMIC ADMin ANCE FUNCTIONS OF 
T ALL BUILDINGS 

H.G. Natke 
Uninnitit Hanno•er, HannoYer, F.R.G. 

Intruduction 

System id·~ntification is an important tool in civil 

engineering, as also shown by J.T.P. Yao in his lecture 

/1/. However, many problemsarestill unsolved or not 

approved. The reasons are manifold: some are due to the 

l.1rge dimensions and their consequences (frequency ranqe, 

realizable excitation), other to local behaviour (and 

therefore difficulties in modellinq), and others to para-

meter sensitivity •. 

Applications are qiven here with ·reqard to two struc-

tures. Eiqenfrequencies and dampinq ratios are estimated 
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for the offshore platform NORDSEE from a test under bad 

weather conditions. The identified eigenfrequencies then 

serve for analytical model improvement /2/. The secend 

application concerns input identification, especially the 

identification of the aerodynamic admittance function of a 

tall building. Thc Munich TV to~er was chosen to demoo

strate the method /3, 4/. 

In addition to thes~ cxamplcs from the author's expe

rience thcte are, vf course, many other applications that 

~x1st and have been published (see e.g. /5/6/7/). The 

conclusion drawn from this experience is that - as stated 

at the beginning - system identification applied in prac

tice leads tu usP.ful results if 

- a priori knowledge is available (the physics are well 

understood) 

- statistical methods are used 

- error estimates (known confidence of results) are per-

formed. 

1. Modal Parameter Identification of an Offshore Platform 

1.1 System and Model Description. The system is the 

"Forschungsplattform NORDSEE" (FPN\. Fig. 1 shows its main 

dimensions. It is a steelframed structure consisting of 
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Jl. 

2 

FIG 2o FUNDAMENTAL BENDING MODE FIG 2b FUNDAMENTAL TORSION MODE 

steel pipes with diameters of 1016 and 1420 mm. It is 

gravity founded. The 1egs are inclined in order to incre~se 

the area of the foundation. The deck body consists of 

different levels. The storage space for fuel and lubricants 

as well as for fresh and waste water is on the tank deck 

underneath the lower deck. A detailed description is con

tained in Ref. /8/. 
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The analytical rnodel is built up with bearn elernents for 

the frarnework construction and with rnassless disk elernents 

for the deck. The deck rnasses are rnodelled as lurnped rnasses 

located at the outer deck boundary in order to form the 

inertias for torsional rnotion. The legs are rigidly suppor-

ted in the rigid foundation, and the foundation soil is also 

assurned as rigid. This original rnodel consists of 798 

degrees-of-freedorn. Because only the first lower eigen-

frequencies and normal rnodes are of interest, the rnodel was 

reduced with respect to the nurober of degrees-of-freedorn by 

sirnplifying the deck rnodel and by ornitting intermediate 

points of the bearn elernents. The result was a 176 degre~-

of-freedorn rnodel with the following eigenfrequencies: 

Table 1: Calculated eigenfrequencies (SAP4) 

i 

1 

2 

f . (Hz) 
Ol. 

1. 96 

3.15 

3 3.76 

Description 

first bending rnode 

first torsion rnode 

The first two rnodes are shown in Fig~ 2 
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1.2 Identification of Eigenfreguencies and DamEing 

Ratios. The platform was preloaded excentrical1y by a 

static force applied to the deck as indicated in Fig. 1. The 

loading was realized by a tuck and a connecting hawser. The 

force was measured by a special tensile pickup, abrupt 

unloading was achieved by cutting the hawser. Fig. 3 

contains the measured force. The measurement of the dynamic 

response ensued (unsuitably) with bounded strain gauges 

(Fig. 1). Same of these quantized signals are plotted in 

Fig. 4. As can be seen, the quantization is insufficient. 

Unfortunately, the test had to be interrupted because of 

bad weather and rough sea and could not be repeated. 

Therefore only a few signals with large quantization errors 

are available for the identification of eigenfrequencies 

and damping ratios. 

Ii 1.0 
.. .8 

~ i 1 
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FIG. 3 MEASURED PRE- AND UNLOADING 
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FIG .I. DIGITIZEO ~1EA.SUREO SIGNALS 

The signals show the decaying due to the abrupt 

331 

unloading of about 6 s superimposed by the dynamic response 

caused by the rough sea. Laplacian transform with an expo-

nential window which reduces the measured signal after 6 s 

to, for example, 1 % of the maximum amplitude, would result 
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result in a large additional damping and therefore lead to 

a bad resolution. Instead of choosing this procedure, the 

large effect of the sea was eliminated. From the Fourier 

transformed signals (Fig. 5) it can be seen that the sea 

effects cause large amplitudes in a frequency interval up 
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-FrPqul'nc.yl l-lz-l 

to 0.2 Hz which do not interfere with the fundamental 

eigenfrequency of about 2 Hz. All the measured signals in 

the time interval up to 25.3 s were Fourier transformed, 

and the results were set equal to zero for frequencies 

higher than 1 Hz. Then they were retransformed and sub-
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tracted from the original time signals: the results are the 

decaying time signals without (approximately) sea effects 

(Fig. 6). These signals were extended by zeroes in order to 

obtain closer frequency spacings and then Laplace trans-

formed, so that 1 % of the max. amplitude remains at 6 s 

(fig. 7). The transformed signals serve as a data basis for 

the identification of eigenfrequencies and damping ratios 

using the procedure described in /9/, Chapter 5.3.2.1. The 

result is contained in Table 2. 

Table 2: Identified Values 

k 

1 

2 

3 

* 

.l::igenfrequencies 
ll + ll 
fk- 't'fk (Hz) 

+ 2.22 - 0.01 

3.34 + 0.12 

+ 4.03 0.04 

Damping ratios 
ll + ll 
llk - 't'otn (p.c.) 

+ 2.8 - 0.4 

* 2. 

+ 2.3 0.7 

Description 

fundamental 

bending 

local 

Vibration 

fundamental 

torsion 

it was not possible to estimate the standard deviation 

Denoting the complex eigenvalues ~k =: ~~e + j ~ ~m(j: imagi

nary unit), the eigenfrequency is defined by fk =: ~~m /(2n) 

and the damping ratio by llk = -~~e I (2 n fk). 
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Verification of the results was done by subtracting 

the Fourier transformed signals of the degrees-of-freedom 

with reference to the identified values from the "cleaned" 

original signals and by looking at the remaining degrees

of-freedom which could be identified. Recalculation (syn

thesized response) with the estimated values and comparison 

with the rneasured responses also show sufficient agreement. 

This exarnple proves that the developed identification 

procedures work, despite the unsatifactory quality of the 

digitized data. 

1.3 Sensitivity Investigations. The next step is the 

pararneter improvernent of the (prior) undamped mathematical 

model with 176 degrees-of-freedom using the two identified 

eigenfrequencies. The largest deviation exists between 

calculated and identified fundamental torsiona1 eigen

frequencies. Next, the question is to be answered concerning 

which pararneters have to be irnproved. Which are the most 

uncertain assurnptions, which influence the eigenfrequencies 

rnost (significantly)? Here linearized differential error 

calculations should help. Table 3 shows the varied parame

ters and the resulting eigenfrequencies. The effective beam 

lengths are considered, because the connection of several 

pipes with the given diarneters of rnore than 1,000 rnm, which 
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are one-dimensionally modelled, creates beam lengths that 

Qre too large due to their node points. As can be seen, the 

eigenfrequencies are not very sensitive due to the varied 

quantities, and they do not explain the deviations. There

fore the deviations must have other causes. A further look 

at the test conditions reveals that the mass state during 

the test was not well known. It therefore follows that the 

inertias have to be improved. 

Table 3: Sensitivity investigations 

Model with 176 dof: 

parameters varied 

100 p.c. displaced 

water masses included 

vertical soil stiffness 

included 

effective bearn lengths 

taken into account 

1. 96 3.15 

1.95 3.06 

1. 89 3.14 

2.02 3.17 

3.76 

3.15 

3.76 

4.22 
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1.4 Inertia Improvement of the Mathematical Model. 

The inertia improvement is performed as described in /9/, 

Chapter 6.2.1.3. The inertia matrix of the system is parti-

tioned into three submodels: 

Submodel 1: deck masses related to bending motion, 

correction factor aMl 

Submodel 2: deck masses concerning torsion motion, 

correction factor aM 2 

Submodel 3: remaining inertia matrix, choosing factor 

The iterative calculation was completed in 2 steps with the 

results: 

Table 4: Mass parameters 

Prior Model 

Submodel 1: lx140t: 140t 

Submodel 2: 12x140t: 1680t 

total 1820t 

Improved Model 

(3.095:0.097)x140t: (433:14)t 

(0.585:0.006)x12x140t: (983:10)t 

(1416:17)t 
========== 

In spite of the insufficient test data and knowledge of the 

test conditions, an improvement of the model parameters is 

obtained so that it describes the measured eigenfrequencies. 
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2. Identification of the Aerodynamic Admittance Functions 

uf Tal! Buildings 

As described in /10/, input identification with a 

structured model is reduced to parameter estimation. 

Structured input identification of this kind is applied in 

civil engineering in order to identify the aerodynamic 

admittance function of a tall building related to along-

wind loads. 

2.1 Using Davenport's Concept /11/. With the struc

tural admittance function (equal to the structured response 

function) F(m) the input/output relation of the buil~ing in 

the frequency domain can be described by 

S (w) = S (w) F,T ,fJw) 
pa PP 1D 

(2 .1) 

and 

S (w)=E,•,(jw)S (w)E(T)(jw) 
aa ID PP ID ( 2. 2) 

and as shown in Fig. 8. 

The star indicates conjugate complex. The al~ng-wing loads 

are described stochastically by a random mean free velocity 

v'(z,t) and a mean velocity v(z) dependent on height z in 

superposition: 

v(z,t) = v(z) + v'(z,t). (2 .3) 
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Assuming ergodicity and applying the Wiener-Khintchine 

transformation to the correlation functions of wind velocity 

and the generalized force of the building, one obtains the 

relationship b~tween the spectrum of the wind velocity and 

the wind loading with the aerodynamic admittance F(a) (jw): 

( 2. 4) 
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and 

• T ) S (w) = F( >(jw) S (w) F( >(jw PP a vv a 
( 2. 5) 

and as shown in Fig. 9. 

Combining the aerodynamic with the structural equation 

in the frequency domain yields the description of the 

entire problem. 

Assumptions /3/ with respect to 

the normal modes to be excited (only 1) 

the coupling of modal coordinates (nothing) 

stochastical wind velocity (linearization) 

the imaginary part of the cross-wind spectrum (negli-

bible) 

independence of the power spectrum of wind velocity from 

the height z 

validity of Hellmann's law (1916) with power a 

product ansatz of velocity coherence function (valid for 

the difference between the heights) incl. exponent clz 

using Davenport's approximation for the joint acceptance 

(as a part of aerodynamic admittance) 

we obtain independent procedures for estirnating a, clz and 

for estimating the pressure coefficient c0 and darnping 

ratio o1 (of the fundamental degree-of-freedom). 
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The application to the Munich TV tower is based on 

long-term measurements /12/. The main characteristics are 
6. 

contained in Fig. 10. The estimate of the power ~is ~ 

0.496 ! 0.007 instead of about 0.3, as published elsewhere. 

The reason for this may be found in the power 1aw itse1f 
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6. 
/13/. The mean value c1z = 1.706 ~ 0.039 lies within other 

measured values. The last estimation procedure yields the 
6. + 6. + 

estimates c0 = 0.55 - 0.18 and n1 = 0.010 - 0.004 for given 

f 01 • The estimates of the standard deviations are large, 

but within the scope of the values given e1sewhere. 

2.2 Using onlv General Assumptions /4/. Taking the 

least squares of the residuals of the measured dynamic 

responses and modelled responses, which consist of the 

frequency response matrix multiplied by the modelled force 

vector 

( 2. 6) 

with air density 90 , the Fourier transformed vector V(jw) 

of wind velocity depending on height coordinate, A. denotes 
l. 

the i-th partial area affected by along-wind loadings 

measured at the i-th measuring point, and v. the corres
l. 

ponding mean value of wind velocity. The frequency response 

matrix is denoted by 

( 2. 7) 
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with 

u0 k the vector of the k-th normal mode 

mgk the k-th generalized mass. 

The resulting lass function is 

-cD((a(c.>r) .flmJc.>r,Dk))* + a(c.>r) 11-m>(c.>r,Dk) )] 

with the measured quantities 

Ä Ä 
SuJc.>):: F{E(u(t)uT(t+t))} :: s:!(c.>) 

~vv(c.>) = F{E(v'(t)v'T(t+t))}:: ~;;(c.>) 

~aJc.>) = F{ E( u(t)v'T(t+t))} = ~::(c.>) 

H.G. Natke 

( 2 0 8) 

(2.9) 

The quadratic functional (2.8) is weighted with the 

inertia matrix M, making use of the orthogonality relations 

to improve the condition of the Hessian matrix by minimizing 

the number of i ts off-diagonal elements. For N ;: n and N > 1 

the Hessian matrix is positive definite, i.e. a streng 

minimum of (2.8) exists for c0 and Dk' k = l(l)n. 
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As can be noted, only a few assumptions are necessary 

(linearity and Eq. (2.6) ceropared with Davenport's concept). 

However, many more measured data are needed. The practi

bility of these methods has still to be checked. 
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INTROOUC'riON 

IDENTIFICATION OF STRUCTURAL DAMAGE 
IN CIVIL ENGINEERING 

J.T.P. Yao 
Purdue UniYenity, W. Lalayette, U.S.A. 

Civil engineering systems such as bridges, buildings, and dams are 

critical to survival and well-being of our society. Because of my educa-

tion and background, the emphasis of these lectures is placed on the 

damage identification of existing structures. 

To make mathematical analyses, it is necessary to simplify and 

idealize the structural system and its environment. The design of a 

structure follows an iterative process involving both structural analysis 

and structural design using generalized mathematical models, whieh are 

based on experienee and available knowledge in the engineering profes-

sion. Using field data and other relevant information, a preliminary 

design is made and the idealized mathematieal model is analyzed for 
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expected or specified loading conditions. Based on these analytiral stu-

dies, the design may be revised and re-analyzed in an iterative manner 

until all design criteria are satisfied. The rompleted design is then 

constructed accordingly. 

For structures which have been construrted and are thus existing, it 

is necessary at times to assess their respective darnage states on the 

basis of available information including measured and recorded experimen-

tal data. In addition, it is desirable to evaluate the reliability of 

these structures so that rational decisions can be made concerning neres-

sary repairs, replacements, retirement, and other maintenance or rehabil-

itation procedures as shown in Fig. 1. 
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Because (a) it is difficult to predict future loading conditions and 

(b) material properties are random in nature, stochastic processes have 

been used to represent these quantities for the estimation of failure 

probabilities. However, the as-built structure is usually different from 

the original mathematical model in the design phase because the real

world structure is an extremely complex system. Even with the use of 

finite element methods and modern computers, it is usually difficult to 

consider all the details in the mathematical model of a given structure. 

Moreover, the damage path and failure behavior of most large structures 

remain unknown because few experimental studies of full-scale structures 

have been conducted to-date. 

For important structures, nondestructive dynamic tests are conducted 

for the estimation of dynamic properties of the as-built structure. 

These test data are then used to obtain "improved" or "more realistic" 

equations of motion. These equations of motion are applicable within the 

range of the test amplitude, which is usually small and within the linear 

behavior of the given structure. Therefore, results of such analysis 

should not be applied where destructive or damaging loading conditions 

are considered. Nevertheless, these mathematical representations can be 

useful for comparison purposes. For example, any change in the measured 

natural frequencies may be used as an indication of structural damage. 

In general, experienced structural engineers can investigate the 

condition of a particular structure and determine its level of safety. 

In such investigations, the original design calculations and drawings (if 

available) are examined and checked. Inspections and testings are con-
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ducted, and the resulting data are analyzed. Results of these analyses 

are then summarized and interpreted by experienced engineers to yield 

appropriate recommendations. Although it is possible to understand the 

inspection and testing conducted and the detailed analysis performed in 

these studies, the decision-making process involved in the determination 

of (a) specific types of inspection and testing procedures and (b) the 

summary and interpretation of experimental and analytical results remain 

privileged information of relatively few experts in the structural 

engineering profession. 

The objective of these lectures is to summarize and discuss the 

state-of-the-art of several subject areas related to detection of struc

tural darnage in civil engineering. The role of system identification and 

its potential application to structural dynamics and reliability studies 

are explored. In addition, the possible application of rule-inference 

rnethods to darnage assessment is introduced and examined. 

SYSTEM IDENTIFICATION IN STRUCTURAL DYNAMICS 

Genera 1 Rernarks 

The mathematical models as used in the design prior to the construc

tion phase do not truly represent the behavior of a given structure. To 

irnprove a mathematical model in the simulation of the real structure, 

response records with or without known forcing functions have been col

lected and analyzed with the use of system identification techniques 

during these past two decades. By necessity, these tests are always con

ducted at small response amplitudes within the Serviceability and safety 



www.manaraa.com

Structural Damage in Civil Engineering 353 

1 imit states. Consequent 1 y, the resul ting modified mathematical models 

are applicable only to the linear or at most slightly nonlinear range of 

the structural behavior. 

At present, it is numerically possible to simulate the structural 

response to extreme forces such as strong earthquakes or wind storms with 

the use of digital or hybrid computers, and thus to evaluate the Servi

ceability and safety conditions of the structures. Nevertheless, there 

exists the paradox that (a) the applicabi lity of "realistic" models of 

the structure are limited to small-amplitude response range, {b) the 

catastrophic loading conditions are likely to cause the structures to 

behave beyond the linear or "near-linear" responses which are usually 

assumed, and (c) the severe loadings may cause serious damages in the 

structure and thus change the structural behaviors appreciably. It is 

important that the extent of darnage in structures can be assessed fol

lowing each major catastrophic event or at regular intervals for the 

evaluation of effects of aging and deterioration. On the basis of such 

damage assessment, appropriate decisions can be made as to whether a par

ticular structure can and should be repaired in order to aalvage its 

residual values. The purposes of this lecture are to (a) review and sum

marize the relevant litersture on the methods of system identification in 

structural dynamics and (b) discuss how the results of system identifica

tion studies may be used to obtain a rational procedure for the safety 

evaluation of existing structures. 

System identification is a process for constructing a mathematical 

model of a physical system when both the input to the system and the 
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limit states. Consequently, the resulting modified mathematical models 

are applicable only to the linear or at most slightly nonlinear range of 

the structural behavior. 

At present, it is numerically possible to simulate the structural 

response to extreme forces such as strong earthquakes or wind storms with 

the use of digital or hybrid computers, and thus to evaluate, the Servi

ceability and safety conditions of the structures. Nevertheless, there 

exists the paradox that (a) the applicability of "realistic" models of 

the structure are limited to small-amplitude response range, (b) the 

catastrophic loading conditions are likely to cause the structures to 

behave beyond the linear or "near-linear" responses which are usually 

assumed, and (c) the severe loadings may cause serious damages in the 

structure and thus change the structural behaviors appreciably. It is 

important that the extent of darnage in structures can be assessed fol

lowing each major catastrophic event or at regular intervals for the 

evaluation of effects of aging and deterioration. On the basis of such 

darnage assessment, appropriate decisions can be made as to whether a par

ticular structure can and should be repaired in order to salvage its 

residual values. The purposes of this lecture are to (a) review and sum-

marize the relevant literature on the methods of system identification in 

structural dynamics and (b) discuss how the results of system identifica

tion studies may be used to obtain a rational procedure for the safety 

evaluation of existing structures. 

System identification is a process for constructing a mathematical 
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~odel of a physical system when both the input to the system and the 

cnrresponding output are known. For most of the civil engineering appli

cations, the input is usually a forcing function and the output is the 

displacement, velocity, or acceleration response of the structure to 

tlwse forces. The mathematical model obtained from the identification 

process shoulc:l produce a response that in some sense matches closely the 

measured output, when it is subjected to the same input (see Natke, 

1986). 

Generally, the system identification technique consists of the fol

lowing three parts: (a) determination of the form of the model and the 

system parameters; (b) selection of a criterion function by means of the 

"goodness of fit" of the model response to the actual response that can 

be evaluated, when both the model and the actual system are subjected to 

the same input; (c) selection of an algorithm for modification of the 

system parameters, so that the discrepancies between the model and the 

actual system can be minimized. Because of the large size and mass of 

most real structures, many common techniques for generating a convenient 

force input and a suitable system output are not practical for the iden

tification of civil engineering structural systems. Only limited source 

of input, such as vibrations due to earthquakes, strong wind loads, and 

controlled explosions, are possible to generate sufficiently large 

excitation for nonlinear structural response. Even for laboratory Simula

tions, the limitations on the types of structure and the types of 

response to be performed in a laboratory are far greater than an electri

cal system or a mechanical system, the identification techniques of which 
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are well developed. In addition, most of the inputs anct outputs art> nm

dom in nature. To extract useful informations from such data posto.; a new 

problern in the subject area of system identification. 

System Identification Techniques 

System identification techniques have been widely used in many bran

ches of science and engineering for the estimation ~f various ch.::triicter

istics of a physical system [e.g.,Eykhoff, 1974; Sage and Melsa, 1971). 

Their applications in civil engineering have been studied with increasing 

interest during the last two decades. In the available literature, :1 set 

of differential equations (lumped-mass model or simple continuous rnodel 

in time domain) or a transfer function (black box model or lumped-mass 

model in frequency domain) are often used to represent the structural 

behavior. A set of parameters are to be estimated from the measured 

response of the real structure to a known disturbance. The application 

of system identification techniques to solve structural engineering prob

lems is called structural identification by several investigators [Hart 

and Yao,l977; Rodeman,l974; Ting, Chen, and Yao,l978; Toussi, 1982; Natke 

and Yao ,1986a]. 

Because of their simplicity, the linear lumped-parameter models are 

the most widely used models in structural identification. More complex 

models such as the linear continuous-parameter models and nonlinear 

models are used only when the lumped-parameter model cannot be used to 

provide an adequate representation of the structural behavior. For lum

ped systems or continuous systems with lumping approximations, the dis-
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turbance must also be represented in a discrete form. On the other hand, 

the disturbances can be either discrete or continuously distributed in a 

cnntinuous system. 

Various least-squares estimation methods (including repeated and 

generalized least squares), the instrumentationvariables method, and the 

maximum likelihood estimation have been used to identify parameters of 

linear structural models. The least-squares estimation minimizes the 

summation of square errors between the predicted response and the 

measured structural response. In the ~eneralized least-squares method, 

the criterion function for evaluating the "goodness of fit" is the summa

fion of square generalized errors which is defined to include the addi-

tive noise covariance matrix. Repeated application of the least squares 

method can be used to modify the usual least squares procedure by 

increasing the order of the mathematical model in an iterative process 

until the desired accuracy is obtained. 

The instrumental variables method is applicable in order to avoid 

biased estimates as they generally result from least square estimators. 

The method involves an iterative process in the calculation of revised 

estimate and instrumental variables matrix function. The maximum likel

ihood method is widely used for parameter estimation ~n statistics. It 

determines the parameter estimate by minimizing criterion function 

through an iterative procedure. The method appears to have the advantage 

of providing the best estimation for a wide range of contamination 

intensity in the external excitation and the structural response [Gersch, 

1975]. 



www.manaraa.com

358 J.T.P. Yao 

In contrast with the linear models, relatively little work seems to 

have been done for nonlinear models [Natke and Yao, 1986b]. It is in 

part due to the mathematical difficulties in considering the nonlinear 

terms. Some common techniques in dealing with linear systems, such as 

the modal expansion and transfer function, are not appropriate in the 

nonlinear case. Nevertheless, it is possible to apply the modal expansion 

analysis to obtain approximate solutions for ''slightly'' nonlinear prob-

lems. It is also because the current developments in structural identi-

fication have mostly dealt with structural parameters with limited range 

of application or parameters for highly simplified structural behaviors. 

For example, in the evaluation of vibratory parameters of structures, the 

models are often limited to small-amplitude response range and time

invariant structural behaviors. However, the catastrophic loading condi

tions such as strong earthquakes and severe windstorms are likely to 

cause the structure to behave beyond the assumed linear range of respon-

ses. 

Using the theory of invariant imbedding, a best a priori estimate 

cam be obtained by minimizing an error function [Distefano and Pena

Pardo,l975]. The method is applicable to some general boundary condi

tions. Dynamic programming filter is a more general method with the 

invariant imbedding as a special case. Instead of going through the 

Euler-Lagrange equations to determine the best estimate that minimizes 

the error function, dynamic programming may be applied directly. In such 

cases, the decomposition of the error function can lead to a system of 

partial differential equations. The optimal least squares filter satis-
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fies the governing differential equation which describes the structural 

model and minimizes the quadratic error function. The error function is 

defined in terms of observed error vectors (weighting matrices) and the 

best ~ priori estimate of the parameters [Distefano,l972; Distefano and 

Todeschini,l974]. 

The Kalman filter has been used'to obtain optimum sequential linear 

estimation and an extended filter deals with nonlinear filtering. Its 

good approximation for high sampling rates has been demonstrated in simu

lation studies of parameter estimation [Sage and Melsa,l971]. 

The maximum likelihood method has been applied to both linear and 

nonlinear systems. It can be used to treat both the measurement noise 

and the process noise, and may also be used to estimate the covariances 

of the noises [Rodeman,l974]. It is also suggested that the extended Kal

man filter may be introduced in the calculation of the likelihood func

tion. For recent advancement in this direction, see Tomlinson (1986). 

An input-output relationship of multiple integral form is assumed to 

represent the model [Marmarelis and Udwadia,l976]. The kernel functions 

which represent model parameters can be estimated by a cross-correlation 

technique. In theory, the relationship can ·be wri tten in Laplace domain 

and thus the kernels are identified in terms of the Laplace parameter. 

Their values in the time domain are then obtained by the usual inversion 

techniques. 

The form of nonlinear models generally varies with the type of exci-

tation and the algorithm employed for numerical calculation. One of the 
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direct extensions of the linear model can be obtained by assuming that 

mx + g(x,x) "' F (1) 

Where x is the structural displacement response, F is the excitation 

matrix (usually the external forces) and nonlinear function g may be 

taken as an odd algebraic function of x and x. For example, in the case 

of a single degree of freedom system, 

• 3 3 
g(x,x) ~. a 1x + a 2x + a3x + a4x (2) 

The integral form of the formulation of the excitation-response rela-

tionship has also been used when transfer function is used for the linear 

model. In an integral formulation, instead of using three constant-

parameter matrices, i.e., m, c and k, the model characteristics are lum-

ped in a kernel function h(T) in the following form: 

x(t) f h(T) F(t - T) dT 
0 

(3) 

It is formally easy to extend the integral formulation to include 

the nonlinear kernels. For example, a second-order model has the form 

[Marmarelis and Udwadia,l976; Udwadia and Marmarelis,l976], 

x(t) 
00 

f h ( T ) F( t - T )dT 
0 1 
00 00 

+ f f h (T ,T 2 ) F(t - T ) F(t - T2)dT 1dT 2 (4) 
0 0 2 1 1 

However, the computation efforts involved for the second or higher order 

models are much greater. 

Hart and Yao (1977) presented a review of the identification 
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theories and applications in structural dynsmies as of 1976. They inclu

ded identification problems which require a prior structural model with 

or without a quantification of experimental and modeling errors. The 

review also contained a brief description of the algorithms and sample 

data. Ibanez (1979) presented a comprehensive review of various techni-

ques for the improvement of mathematical models in structural dynamics. 

Liu and Yao (1978) discussed the concept of structural identifica

tion in the context of system identification and unique characteristics 

in its structural engineering applications. Basically, structural 

engineers are interested in identifying the damage and reliability func

tions in addition to the equation of motion. From another viewpoint, the 

updated equation of motion using test data and system identification can 

be a tool for the estimation of damage and reliability of existing struc

tures [Natke and Yao, 1986b]. 

When a structure is inspected for the purpose of making damage 

assessment, a sequence of tests (or measurements using natural loading) 

may be conducted and the resulting data can be analyzed accordingly. 

Quantities which can be measured and recorded in testing structures 

include the load, the deformation (or strain) and the acceleration. From 

such data, mechanical properties such as stiffne~s and strength and 

dynamic characteristics such as natural frequency and damping can be 

estimated. in addition, visible damage such as cracks and local buckling 

in the plastic range can be detected by experienced observers. As a 

ptactical example, binoculars have been used by persons looking for color 

change in window panes in a tall building which indicate the presence of 
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flaws causing the eventual breakage of these window glasses. 

For metal structures which are subjected to repeated load applica

tions, dye-check, ultrasonic or x-ray devices may be used to find and 

measure small and hidden fatigue cracks which indicate structural damage. 

The effect of detecting such fatigue cracks during a periodic inspection 

on the structural reliability of aircraft structures was studied by Yang 

and Trapp (1974). More recent development along this line has been 

reviewed by Yao et al. (1986). 

Many full-scale on-site load tests of building structures have been 

per~ormed in the United States of America during these past several 

decades [Hudson,1977]. To-date, most field-load-tests are static in 

nature and limited to sturlies of flexural response. Fitzsimons and Lon

ginow (1975) emphasized the fact that a static test cannot be used to 

reveal such weaknesses of a given structure as those due to corrosion, 

repeated load, creep, and brittleness. Nevertheless, load tests can be 

used to improve the reliability estimate [Shinozuka and Yang,1969]. 

Moreover, valuable information such as the stiffness of the structure can 

be obtained for 'the improvement of the mathematical representation of the 

structure for further dynamic analysis. 

When a structure undergoes various degrees of damage, certain 

characteristics have been found to change. In testing a reinforced con

crete shear wall under reversed loading conditions, free vibration tests 

were performed to estimate the fundamental natural frequency and damping 

ratio. Results of these tests as given by Wang, Bertero, and Popov 
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( !975) indicate that (a) the frequency decreased monotonically with 

darnage whi le thP damping ratio increased initially and then decreased, 

and (b) the repaired specimen was not restored to the original condition 

as indic<lted by free-vibration tests data. Similar results were reported 

hy Hudson ( 1977), Hilgardo and Clough (1974), and Aristizabal-Ochoa and 

Sozen (197fi). 

Comprehensive experimental results of dynamic ful1-scale tests were 

obtained for a multi-story building structure and a 3-span highway 

bridge. Galambos and Mayes (1978) tested a reetangular 11-story reinfor

ced concrete tower structure, which was designed in 1953, built in 1958, 

and tested to failure in 1976. The large-amplitude (and damaging) motions 

were induced with the sinusoidal horizontal movernents of a 60-kip 1ead

mass which was placed on hardened steel ba1ls on the e1eventh floor. 

This lead-mass can be displaced up to ~ 20 inches and the frequency capa

city was 5Hz with the use of a servo-controlled hydraulic actuator, one 

end of which· is fastened to the building frarne. The rnaxirnurn horizontal 

force range was ~ 30,000 pounds. Test results indicated that the natural 

frequency decreased with increasing darnage in general. Similarly, Baldwin 

et al. (1978) concluded frorn their testing of a three-span continuous 

composite bridge that changes in the bridge stiffness and vibration sig

natures can be used as an indication of structural darnage under repeated 

loads. Further analyses of such full-scale test data shou1d be usefu1 in 

understanding the structural behavior as well as in making darnage 

assessment of existing structures. 

System identification tests are a1ways conducted at extremely 1ow-
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level Vibrations such that they can be performed as many times as it is 

needed without causing any apparent darnage to the existing structure. In 

most cases, only earthquake response records are available for the pur-

pose of darnage analysis. 

In general, the complete record of an earthquake can be separated 

into the following three portions with different characteristics: (a) 

strongly-excited portion with higher modes contribution at the beginning 

of an earthquake, (b) much larger amplitude portion with nonlinear 

behavior, and (c) very low level vibration portion at the end of an 

earthquake. In system identification problems, parameters identified from 

the first portion cannot be very accurate although a contribution of 

higher modes has been considered in the analysis because of higher irre-

gularity of earthquake input and response data. Because the third por-

tion is equivalent to very low level ambient vibration, natural frequen-

cies identified from the last portion is always higher than and cannot be 

compared with that from the second portion. However, the period of the 

first portion and the relatively low amplitude of the last portion cannot 

be determined because they depend on the duration and intensity of earth-

quake and structural characters. Consequently, one approach used by Chen 

(1980) is to deal with the identification of structural characteristics 

only in the second portion by dividing this portion into several segments 

in order to study and compare the changes among those characteristics. 

Method I is applied to find parameters w (natural frequency) and ~ (dam
n 

ping coefficient) as functions of time from two linear equations of 

motion at time t and time t + Atb by using measured earthquake and 
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response data, x 0 (t) and y (t), respectively. Parameters at any time t 

can be found as follows: 

. 
2 

(x (t)+y (t))y(t+~t)-(x (t+~t)+y (t+~t))y(t) 
0 0 

w (t) 
n 

------- .... --.-------- ----· ------------- ( 5) 
y(t)y(t+~t)-y(t+~t)y(t) 

and 

F,(t) 

• • • • 2 
X 0(t)+y (t)+wn(t)y(t) 

= ------- • (6) 
2w (t)y(t) 

n 

When the denominators of Eqs. 5 and 6 approach zero due to (a) 

inadequate choice of M, (b) nonlinear behavior, (c) higher mode contri-

bution, or (d) measurement noise, it is difficult to estimate the values 

of w (t) and F,(t) using this method. By using the least-square-error
n 

fit, natural frequency, w , and damping ratio, F,, can be estimated by 
n 

minimizing the following integral-squared difference, E, between he exci-

tation, x01 , input to a structure and th excitation, 

from its linear model: 

E 

nk 
r. 

i=nj 

nk 
E 

i=nj 

Chen (1980) obtained the following estimates: 

2 
1.11 

n 

• • • 2 
(Ey iyi+Ex oiyi)Eyiyi-(r.y iyi+r.x oiyi)Eyi 

·2 2 • 2 
EyiEyi-(Eyiyi) 

,and 

calculated 

(7) 

(8) 
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where x 
oi • y i. y , and y are 

i i 

2w l:y y 
n i i 

measured response 

quake, and intervals n. • ~ are segments of the 

identification 

... ' (I) 
nn and 

of (I) 
n 

J 

and f,;. In addition, values 111 

are identified 

J.T.P. Yao 

( 9) 

data during an earth-

records to be used for 

nl and F,n2' and F,2, 

(nn,nn+l), respectively. Note that Equations 8 and 9 are reduced to 

Equations 5 and 6, respectively when only two point of record are con-

sidered. 

The main advantage of using such simple methods and linear models is 

the ease in checking the results and in preventing unnecessary errors 

associated with some complicated calculations. In a possible future 

application to structural control [Yao,l980), such simple methods can be 

useful. Moreover, the real nonlinear characteristics for any given 

full-scale structure are not readily known in most cases. 

These methods are applied to analyze response records of two buil-

dings collected during the 1971 San Fernando Valley earthquake [Foutch et 

al.,l975]. The Union Bank Building is a 42-story steel-frame structure in 

downtown Los Angeles. Prior to the 1971 San Fernando Earthquake, 

strong-motion accelerographs with synchronized timing were installed in 

the sub-basement, on the 19th floor and on the 39th floor. However, the 

instruments on the 39th floor failed to function. 
0 The S38 W components 

of the digitized relative acceleration, velocity and displacement at the 

19th floor were used as the response data in the analysis. As shown in 
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Fi~ure 2 the result'> of Chen's methods agreed with those of modal minim-

ization method by Beck (1978). The natural frequency is shown to 

decrease se~ment by segment except for the last value obtained from 

~fethori II. The loss of stiffness as indicated by this change in natural 

frequency seems to be the results of cracking and other types of damage 

in nonst ructural elements du ring the occurrence of large-amplitude earth-

quake response. 

2.0 

1.6 

wll u 
IRPSI 

1.2 

+-X...-

ll--6 Method I - Chen 
+-- --+ Method D: - Chen 
x-·-- Beck 

·..;: it--.""IC-.t.. 
6-.......... ._.,.. __ .• 

- ... ~---- + 

20 

......... ..,.. ____ .......::.:.:.:-
6 

'0 
TIME (SEC) 

60 

Fig. 2 Comparison of the Natural Frequency ldentified from 
Different Methods for Union Bank Building ( From Chen , 1980 l 

Building 180 is a 9-story steel-frame structure on the grounds of 

the Jet Propulsion Laboratory, Pasadena, California. The 882 ° E com-

ponents of the ground acceleration, relative acceleration, velocity and 

displacement at the roof were used as the excitation and response data. 

Figure 3 shown results from Method I and Hethod II by Chen (1980), and 

Modal Hinimization method by Beck (1978). The amplitude of the accelera-

tion response of this building during the earthquake was twice that of 

the Union Bank but damage was limited to minor nonstructural cracking. 
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However, very little changes in the natural frequency result in this 

analysis due to relatively minor darnage involved. 

7.0 

6.5 

6.0 

- 5.5 
wl'l 

I RPS) 5•0 

4.5 

4.0 

3.5 

6--6 Method I - Chen 

+----+ Method n- Chen 
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6 
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3.0 '---r-..----.----,---.-,.---.....---.--,----r--.-...--...,---.-........ 
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TIME I SEC l 

Fig. 3 Comparison of the Natural Frequency ldentified trom 
Different Methods for JPL Building 180 ( From Chen, 1980 ) 

Application of ''Non-parametric'' Methods 

Consider a single-degree-of-freedom system as shown in Fig. 4(a). 

Its spring and damping forces are assumed to be functions of displacement 

and velocity response, respectively, as shown in Fig. 4(b). Suppose that 

the displacement and velocity response can be obtained from recorded data 

as shown in Fig. 4(c). The local maximum and minimum values of the 

displacement occur whenever the velocity response is zero. In between 

these local maximum and minimum values, polynomial functions such as Eq. 

2 can be used to describe the relationships between (a) the damping force 

fp and velocity x and (b) the spring force fk and displacement 

et al.,l979; 1980]. 

X [Masri 

Toussi (1982) developed such a nonparametric method for a multi-

story building frame, where the relative acceleration y(t) and the 
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fp 

( b) 

F1g 4 System• s Model I From Toussi. 1982 l 

applied force f(t) are available as recorded data. The resisting force 

is assumed to depend upon the relative displacement and velocity, i.e., 

The resisting force, fR(t), is often separated into the following two 

parts: one part depends primarily on y and another part depends mostly 

on y. Here, they are referred to as spring and damping forces, which can 

be nonlinear functions of y and y, respectively, i.e., 

fR(t) • f (y) + f (y) (11) 
p K . 

where the damping force, f (y), and the spring force, f (y), are defined 
p K 

as follows: 
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and 

p 
f K(y) I. 

j =0 
q 

f (y) = I. 
p j =0 

J.T.P. Yao 

( 12) 

( 13) 

p + q < n.-1 (14) 
- 1 

In which, ni indicates the number of points (samples) within interval i. 

Substitution of Equations 12 and 13 into Equation 11 yields 

where 

p 

c + I. 
j =1 

q 
I. 

j = 1 
( 15) 

( 16) 

Repeating Equation 15 for the response components of each one of these n1 

points results in ni simultaneous equations as follows: 

F = YA 
R 

(17) 

where FR, Y and A represent the resisting force vector, response matrix 

and parameter vector of the ith interval respectively. The elements of 

vector FR are .calculated by setting the equilibrium of forces which are 

acting on the structural system equal to zero. 

fR(t) = my (t) + f(t) (18) 

Because y and y can be calculated by integrating the recorded accelera-

tion, y , the response matrix, Y, is also known. Therefore, the factor A 

can be found by pre-multiplying the inverse of matrix Y on both sides of 

Equation 17. Thus 
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-1 
A = Y FR (19) 

after the parameter vector is calculated, the components of the resisting 

force can be obtained. It is important to study the measured and recorded 

noise and the effect of imperfect mathematical representation of struc-

tural behavior. The presence of noise suggests the use of mathematical 

statistics. Because statistical calculations require a sufficient number 

of samples, the number of parameters is reduced in Toussi's study instead 

of increasing the nurober of samples (1982). 

mj, 

j=l,2, ••• ,N, it is assumed that these masses are connected by nonlinear 

For the lumped-mass model for a building with masses 

dashpots Cj , and nonlinear springs, ~ , as shown. The recorded motions 

consist of the acceleration of the base, y (t), and absolute accelera
g 

tion of the floors, x .(t), j•1,2,3, ••• N. The absolute velocity and dis
J 

placement of each floor is obtained by integrating the corresponding 

absolute acceleration. The forces created in the springs and dashpots 

are assumed to depend upon the relative displacement and velocity between 

the neighboring masses, respectively, i.e., 

where 

y j ( t ) •xJ' t) -x j _1 ( t ) , j •1 , 2, ••• N . . . 

(20) 

(21) 

(22) 

(23) 

Now the equilibrium of forces applied to each floor is formedas follows: 
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m x (t)+f [y (t)]+f [y (t)) = 0 
N N p N K N . . 

mN_ 1x (t)+f [y (t))+f [y (t))=f [y (t))+f [y (t)) 
N-1 p N- 1 K N- l p N K ~ 

( 24) 

m x (t)+f [y.(t)l+f [y (t)l=f [Y. (t)l+f [Y. (t)) 
j j p J K j p J+l K J+l 

m x (t)+f [y (t)l+f [y (t)l=f [y (t)l+f [y (t)l 
2 •• 2 p .2 K 2 p .3 K 3 

m 1x < t ) +f [ y < t ) I +f [ y < t ) I =f [ y < t ) I +f [ y < t ) I 
1 p1 K1 p2 K2 

Summing the top j equations at a time with j=l,2, ••• ,N, yields N equa-

tions as follows: 

.N 
f [ y. ( t) ] +f [ y. (·t) I= I. m x ( t) , j = 1 , 2, ••• , N 

p J K J K=j K K 
(25) 

In Eq. 25, because the quantities on the right-hand side are known, 

the summation of forces can be estimated at any given time. 

The response data of two test structures (MF1 and H2) were used by 

Toussi (1982) to evaluate the effectiveness and applicability of the pro-

posed method. The MFl test structure is a one tenth-scale, ten-story, 

three-bay reinforced concrete structure which was tested by Healey and 

Sozen (1978) at the University of Illinois. The test procedure included 

a series of strong base motions simulating a scaled-version of the 

north-south component of the 1940 El-Centro earthquake. The input 
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acce leration level was magnified for each one of the three test runs. 

The H2 test structure was also a one tenth-scale ten-story reinforced 

concrete structure which was tested by Cecen ( 1979) and subjected to 

seven simulated excitations. from the 1940 El-Centro earthquake. 

The removal of the noise trend hidden in the measured acceleration 

response was accomplished through fitting a polynomial of degree 5 to 

each one of the velocity data obtained by integrating the corresponding 

acceleration time-histories. Toussi (1982) then applied the hysteresis 

identification method to estimate the inter-story load-deflection rela-

tionships of the frame. The spring force is restricted to a polynomial of 

degree three while the viscous damping is chosen to have a linear form. 

The estimated behavior of the seventh floor of H2 test frame for the 

seven test runs is shown in Fig. 5. For this frame, the general soften-

ing is concluded and as the intensity of the earthquake excitation 

increases, more nonlinearity in the structural behavior appears. Another 

150 

w 
u 
0:: 0 
0 
u.. 

-150 

I 
I 

I 

-15 

LEVEL 1 , RUN 1 

~ 
r; 

0 15 
DEFORM,MM 

LEVEL 1, RUN 2 LEVEL 1, RUN 3 

-15 0 15 -15 0 15 
DEFORM , MM DEFORM,MM 

Figure 5 Estimated force- deformation response. Level 1. 
Model MF 1. Runs 1.2 and 3 

( From Stephens. 1985; using data of Healy and Sozen,19781 
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interesting feature is the "soft-to-stiff" type of behavior that the 

structure experiences under different levels of load. Finally, the iden-

tified load-deflection curves become rather wide area-wise which is the 

indication of the dissipation of energy. 

In 1983, Stephens et al. (1983) reviewed available information con-

cerning (a) real-world structures in actual earthquakes, (b) full-size 

structural systems in controlled tests, and (c) small-size to full-size 

models of structural systems in laboratory experiments. A~ examples, 

results on several experiments of reinforced concrete structural models 

are summarized in Tables l and 2. 

Table 1 . Umvers1ty of llhno1s. 1/12 S1ze Re1nforced Concrete Model Tests 

Exper1menters Test ObJecl1ves Model Conflgurot1on a Displacement H1stc.ry b 

Moehle 1nveshgate the earthquake 4 models . 9 stones. EI Centro NS. 1940. 
and response of structures havmg each model w1th a des1gn peok occeler-
Sozen abrupt mterrupt1ons 1n story central woll of a ot1ons ot 0.4. 0.8 . 
(1980) stlffness d1fferent he1ght ond 1.2 g 

Healey study the nonlinear dynam1c 1 model . 10 stones EI Centro NS. 1940. 
and response of o remforced des1gn peok occeler-
Sozen concrete structure subjected ot1ons of 0.4 .0.95. 
(1978) to earthquake mot1ons and 1.2 g 

Anshzabal· mveshgate the response of 4 models. 10 stones. EI Centro NS. 1940, 
Ochoa str~ctures res1shng earth- 3 models des1gned to Taft N 21 E. 1952 
and quake forces lhrough "cant- to y1eld 1n1hally 1n peak occelerat1ons 
Sozen 1lever "rat her than" frame" beams. 1 model w1th of 0.41 lo 1.96 g 
(1976) act1on sl1ffened beoms 

Cecen study bath the elast1c and 2 models. 10 stones EI Centro NS. 1940. 
(1979) inelastic response of re1n- each structure sub-
and forced concrete structures Jected to a different 
Sazen subjected to earthquakes sequence of events 

Abrams 1nvest1gote the mterachon 4 models. 10 stones . each structure 
(1980) of the frames and walls af the models conta1ned subjected to three 
and re1nforced concrete struc- slender structural s1mulated earthquake 
Sozen tures subjected to strong walls of different events of 1ncreasmg 

earthquake ground motions strengths 1ntens1ty 

a The basic model configuration cons1sted of two 1/12 s1ze re1nforced conc.rete fromes ,9 or 
10 stories high and 3 bays wide. The frames were mounted parallel on the shoke table. 

b ln each eartt\quake event • the models were shaken un1axlally . parallel to the lang ax1s 
of the frames. The time scale of the events was compressed by a factor of 2.5 . 
Each model was subjected to a series of events of increasmg mtens1ty. 

( From Stephens and Yao • 1983 l 



www.manaraa.com

Structural Darnage in Civil Engineering 

labte 2: Unoversoty of Calofornoa. Berkeley. 0.7 Soze Reonforced Gancrete Frame Tests" 

Olova 
11980} 

study the melasttc 
btaxtal column buckllng 
1n retnforced concrete 
frames subjected to 
setsmtc Ioads 

one model I RC 5 }. 
tdenhcol '" destgn 
to RC 2 . damaged 
dunng test1ng. 
repatred ond retested 

Taft. 1952. model skewed 
25 deg woth respect to 
the dtrecton of tobte 
mohon 

• Documentatoon was found on the lavaolable} Ioterature only for tests RC1,RC2andRC5. 

b The bastc model used for oll the tests was o 0.7 s1ze concrete frame . two stones 
hogh and one bay wode. 

I From Stephens and Yao. 1983 } 

Evaluation of Seisrnic Darnage 

375 

To make use of the estirnated load-deformation relations frorn struc-

tural response records, it is desirable to find a suitable failure 

theorern. On the basis of a low-cycle failure criterion [Yao and 

Munse,1962], Stephens (1985) developed the following darnage function: 

n 
D = E 

i•1 

where the fatigue darnage exponent, a = 1-(b*rl); b 

(26) 

deforrnation ratio 

coefficient; rl = relative deforrnation ratio defined as the ratio of the 

negative change in plastic deforrnation in cycle i, 66 , to the positive 
pc 

change .in plastic deforrnation in one-cycle test to failure conducted at 

the relative deformation ratio of cycle i. The value of the curnulative 

darnage, D, is postulated to range from 0 to 1.0, with a value of 0 

corresponding to no darnage (safe), a value of 1.0 to failure (critically 

darnaged). 
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To develop such a darnage function for structural systerns, it was 

assurned that deforrnation under reversed cyclic load in one direction pro-

duced "indirect darnaging response" (e .g. "less-than-ultirnate" cornpression 

strains) at sorne locations and "direct darnaging response" (e.g. tension 

strains) at other locations in the structure. The response condition at 

each location reversed when the direction of deforrnation reversed. 

Effects of "indirect darnaging response" were considered through the 

cycle-shape-dependent pararneters rl and ~~pf" Darnage was accurnulated 

independently in each deforrnation direction for both forms of the expres-

sions. Total darnage was conservatively estirnated as the larger value of 

the ~arnage indices as calculated in both directions. Several accelera-

tion records of structural response to earthquake ground rnotions were 

processed and analyzed to estirnate the force-deformation response of the 

structure as shown in Figures 6 through 8. Building structures studied 

LU 

~ 15 
0 u.. 

10 

DEFORMATION, in 

( a l Monotonic 

20 

LU 

~0+--~'---------t'-+++-1----'----l 
Ir 

0 

DEFORMATION,in 

( b) Cyclic 

10 

Figure 6 : Measured force- deformation response from 
beam- column component tests 
( From Burns and Siess . 1966 ) 
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TESTS 112 LEVEL I TEST 3 I LEVEL I TEST 4 I LEVEL 1 

450 .,....------.-----, 

w 
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I 

- 450 L----+-----' 
. 60 0 60 . 60 0 60 
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- 60 0 60 
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Figure 7: Force-deformation response. U.S.- Japan test 
structure, ground ftoor 
( From Stephens . 1985 l 
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- 300 +-------!------; 
-100 0 100 
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Figure 8 : Estimated force- deformation response. Imperial 
County Services Building. ground floor 
( From Stephens . 1985 l 

J.T.P. Yao 

included laboratory test models (e.g., Healey and Sozen 1978; Okamoto et 

al. 1982) and the Imperial County Services Building (McJunkin and Rags-

dale, 1980). Information from the force-deformation response is then 

substituted into darnage functions to obtain quantitative measures of the 

darnage conditions of the structure. Darnage indices using darnage indices 

of Stephens (1985) and Park et al. (1984) are listed in Tables 3 through 

6. 

Specimen 

J -8 
J-6 
J-5 
J- sa 

Table 3: Darnage indices at failure of beam-column 
components ( From Stephens. 1985 l 

New Index Park and Ang 
Direct 1 Direct 2 Index 

1. 21 1. 08 2.84 
1. 03 0.19 1. 04 
0.69 0. 10 0.79 
0.93 0 14 1.00 

0 recalculated 

Drift 
Ratio 

0.16 
0.13 
0.13 
0.13 
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Test 
Event 

Run 1 

Run 2 

Run 3 

Table I. Damage tndtces end damage classtfications 
Model MF 1 . Level 1 ( From Stephens. 1985) 

Damage Assumed monotontc Toussi and Yao ( 1982/83 J 
Expresston dr tft to fatlure Damage condition b 

5% 10%11 15% Algonthm Opinion 

New Index 
Otrect 1 0.46 0.19 0.12 
Otrect 2 0.1.8 0.21 0.03 

s L 
Park end Ang 

s = 0. 25 0.57 0.28 0.19 
0.50 0.80 0 .1.0 0.27 
1.00 1. 26 0.63 0.42 

New Index 
Otrect 1 1. 23 0.46 0.27 
Dtrect 2 1. 21 0.45 0.26 

Park end Ang D 0 
s = 0.25 1.41 0.71 0.1. 7 • 

0.50 2.12 1.06 0.70 
1.00 3. 54 1. 77 1.18 

New Index 
Direct 1 2.88 1. 01. 0.59 
Otrect 2 2.71 0.91 0.49 

Park end Ang c c 
n = o. 25 2.21 1.10 0.74 

0.50 3.59 1.79 1.20 
1.00 6.55 3.17 2.12 

0 bes.t estimate 

b S ·· safe • L - I ight ly damage. D - damaged. C- cri tically damaged 

Table 5 : Damage tndtces fallowing the fourth lest on the 
U.S.- Japan structure ( From Stephens. 1985) 

Damage Assumed monotonic 
Expresston drtft to fatlure 

1.% 8%u 12% 
New Index 

Direct 1 0.32 0.15 0.10 
Direct 2 0. 1 1 0.01. 0.02 
Park a·nd Ang 

n = 0.25 0.86 0.1.3 0.29 
0.50 1.24 0.63 0.1.0 
1.00 1. 99 1. 01 0.79 

Slope Ratte 0.26 
Drtft Ratte 0.019 

0 best es!tmate 

379 
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Tobte 6 Darnage 1nd1ces. lrnpenal County Serv1ces Bulldmg. 
ground floor. longitUdinal d1rec lion 
( Frorn Stephens . 1985 ) 

Darnage Assurned rnonoton1c 
Express1on drill to faliure 

5% 10% 0 15% 
New Index 

D1rect 1 0.26 0.09 0.05 
D1rect 2 0. 26 0.09 0.05 

Park and Ang 
n = o.25 0.85 O.l.2 0.28 

0.50 1. 21 0.59 0 l.O 
1.00 1. 9l. 0.9l. 0.63 

Slope Rollo 0.50 
Dnft RatiO 0.025 

0 best estirnate 

The darnage indices obtained for these structures were also corre-

lated with independently formulated descriptive darnage assessrnents of the 

type safe, lightly darnaged, darnaged, and critically darnaged (Toussi and 

Yao, 1982, 1983). Based on these correlations, the darnage functions pro-

duced reasonable and potentially useful rneasures of the darnage conditions 

of the structures. However, the available data were considered to be 

insufficient to reliably deterrnine the specific correlation between darn-

age index and darnage state (Stephens 1985). 

EXPERT SYSTEMS FOR DAMAGE ASSESSMENT 

General Rernarks 

It is usually difficult to consider all the details in the rnathernat-

ical model of a given structure. Moreover, the failure behavior of rnost 

large structures subjected to various loading conditions rernain unknown 
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because few experimental studies of full-scale structures are available 

for comprehensive studies to-date [e.g., see Okamoto et al. (1982)]. 

Many structural engineers specialize in the condition evaluation of 

a particular structure and the determination of its level of safety. In 

such investigations, the available design calculations and drawings are 

examined and checked. Inspections and tests are conducted, and the 

resulting data analyzed. The results of these analyses are then summar-

and interpreted to yield appropriate recommendations. The 

decision-making process involved in the determination of (a) specific 

types of inspection and test procedures to be used and (b) the summary 

and interpretation of analytical and experimental results require exten

sive and specialized judgment and experience of professtonal engineers. 

In this section, a unified approach to safety evaluation of existing 

structures is presented and discussed. The emphasis is placed on the 

application of expert systems and fuzzy sets, which are used for the sum

mary and interpretation of results of inspection, testing, and analysis. 

Expert Systems 

Experienced structural engineers are capable of making accurate 

measurements and precise calculations. However, the summary and 

interpretation of such results in order to obtain meaningful conclusions 

and practical decisions remain an art in most cases. In the current prac

tice of structural evaluation, it is desirable to obtain available build

ing documentation, visual examination, structural analysis, field and/or 
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laboratory testing, and continual evaluation and interpretation of the 

collected infonnation by human experts through their experience, intui

tion, and judgment [Hoses and Yao, 1984; Yao, Bresler and Hanson, 1984). 

SPERIL (Structural PERIL) is an expert system for the assessment of 

structural damage. To-date, two preliminary versions of this system have 

been foraulated for the purposes of demonstration and practical implemen

tation. 

SPERIL-I is a production system for the diagnosis of seismic damage 

of existing structures [Ishizuka et al., 1983). This system consists of 

a knowledge base and an inference machine. In the knowledge base, useful 

inforaation for the damage assessment is stored as production rules which 

are obtained aainly from the visual inspection of structures and the ana

lyaes of acceleration records during the earthquake. The most distinct 

feature of this systea is that separate evidential Observations are 

integrated using Dempater and Shafer's combination rule and fuzzy sets. 

Possible daaage classifications include (a) no damage, (b) slight damage, 

(c) moderate damage, (d) severe damage, (e) destructive damage, and (f) 

no appropriate answer. 

In SPERIL-II, metarules are adopted for the selection of the rule 

group and a suitable inference method [Ogawa et al. 1985). The inference 

machine haa several reasoning methods such as forward reasoning and back

ward reasoning. The knowledge base consists of rules for damage asseas

ment end metarules. In the memory, information stored include inspection 

data, testing results, drawings and documents, and historical records. 
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To compare the results of more recently, an expert systems is being 

developed for evaluation of structural durability [Furuta et al. 1986). 

Other applications of expert systems in structural engineering are 

reviewed by Furuta et al. ( 1985). 

The theory of fuzzy sets began with Zadeh (1965,1973,1983). An ele

mentary introduction was given by Brown and Yao (1983). Ishizuka et al. 

(1983), Ogawa et al. (1985), and Zadeh (1983) among others have applied 

fuzzy logic in various expert systems. 

Many interrelating factors affect the fatigue behavior of a welded 

structure fBo~an and Yao, 1983]. While it is possible to assign numeri

cal values to some of these variables, it is difficult to obtain a com

plete mathematical model of the fatigue behavior of existing structures 

[Bowman et al. 1985). Consequently, the method of linguistic assessment 

is suitable for solving such complex problems. 

There are the following four basic steps in a linguistic damage 

assessment procedure: (a) Assessment of each variable in linguistic 

terms; (b) Translations of linguistic terms into fuzzy sets through the 

use of a dictionary; (c) Inference of the fuzzy damage state; (d) 

Translation of fuzzy damaged state into linguistic terms [Watada, 1983; 

Watada et al. 1984). Hinkle et al. (1986) demonstrated the usefulness of 

using such a procedure with actual test data. 

CONCLUDING REMARKS 
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Because (a) the failure behavior of full-size structures is highly 

nonlinear and dependent on loading history, and (b) there are insuffi-

cient data on loading condition for reliable prediction of future loads, 

much work remains to be done in estimating the darnage and reliability of 

structural systems. In particular, existing and deteriorating structures 

are extremely complex systems, the darnage state of which is difficult to 

evaluate. In spite of recent advances in finite-element analyses and 

computer technology, it is still difficult to mathematically model the 

behavior of structural systems. Moreover, there exist various uncertain-

ties in many theorems of cumulative damage. The application of expert 

systems is suggested along with system identification techniques in which 

many sources of data, calculation, and other information concerning the 

structure may be considered. Note that the practical implementation of 

such expert systems remains to be a challenging task. 
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APPLICATIONS IN AEROSPACE AND AIRPLANE ENGINEERING: 
ESTIMATION OF MODAL QUANTITIES AND MODEL IMPROVEMENT 

H.G. Natke 
Univenitit Hannover, Hanaover, F.R.G. 

Here the author reports on older experience of groundl) 

and flight 2) vibration tests of airplanes which, however, in 

its statements is still valid. Today better relative pickups 

are available than 10 years ago, and more effective mini-

and ~-processors, including software, can be used for data 

processing. The power amplifiers of the electrornagnetic 

exciters are much smaller and need no water-coolini any 

l) Test on the ground simulating the free-free boundary 

conditions of the plane in order to determine its eigen

quantities 

2) Test during flight of an airplane to estimate 

eigenfrequencies and damping ratios depending on Mach 
nurober and speed 
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more. This is through the use of transistors instead of 

tubes etc. The excitation possibilities are also greater 

than they were 20 years ago. But when one looks at the 

.ground Vibration test, especially in France and the Federal 

Republic of Germany, one finds that the "official" insti

tutions such as ONERA and DFVLR still mainly use the phase 

resonance technique with harmonic excitation /1/2/ as 

described in /3/4/. The flight vibration tests, including 

their quick-look application, ~ake use of newer data proces

sing methods, such as FFT and phase separation techniques 

/5/. The modal identification of satellites in free-free 

boundary simulation is done similarly as for airplanes. 

However, in satellite testing in the earth-gravity 

environment it is more difficult to fix exciters at those 

points which are necessary for the appropriate force exci

tation. In the clamped-free boundary condition (such as a 

cantilever) in which the attached part is generally excited, 

the special excitation has to be taken into account. 

1. Experimental Modal Analysis 

Nothing is to be repeated here concerning the phase 

resonance method (see /3/4/5/). The suspension can be done 

(satellites, small rockets etc.) by steel cables (or wires) 

which can work in the vertical direction as soft springs, 
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and in the horizontal direction with the test object as a 

rigid mass as a pendulum (through which their lengths are 

d~termined): Fiq. 1. Rubber cables are inexpensive for light 

test objects (material models) , but their disadvantage is 

the creep of the cables (Fig. 2). Instead of cables, bellow 

elements can be used (air-springs) , which may be displace

ment-controlled when testing is performed in different mass 

configurations (Fig. 3). Fig. 4 shows the application of 

airsprings to a cargo-plane and Fig. 5 to a (vertical 

take-off) fighter. The preparation of the payload of the 

Europa I launeher for qround vibration testing is shown in 

Fig 6. In Fig. 7 a quite different support can be seen for a 

helicopter, which can be suspended by servo-controlled 

pneumatic springs or can stand on grassy soil (looking for 

ground resonance effects). Sometimes, with less expenditure, 

the plane can stand on softened deflated tires in order to 

simulate the free-free condition. The suspension should be 

fixed at structure points with fewer displacements and in 

such a way that the suspended structure is stable. The 

free-free condition is obtained when the ratio of suspension 

eigenfrequency to the fundamental frequency of the elastic 

degrees-of-freedom is about 1/3 or 1/4 (see /4/). 

Fig. 8 shows an electromagnetic exciter and Fig. 9 a 

servo-hydraulic device, both being used for sinusoidal 

excitation; slow frequency sweep and stepped sine was 
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Fig. 1 Suspension by steel cables /6/ 



www.manaraa.com

Aerospace Engineering 395 

Ficigelmodell VFW 61~ 

Versuchsaufbau 

Fig. 2 Suspension by rubber cables 
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Fig. 3a Suspension by steel cables 
combined with air springs 

H.G. Natke 
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Fig. 3b Suspension by steel cables 
combined with air springs 

397 
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Fig. 6 Vibrator test with the 
payload of a launeher 
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Fig. 8 Electro-magnetic exciter 
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Fig. 9 Servo-hydraulic device 
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Fig. 10 Cartridge used in flight vibration 
testing (top) with its burn diagram 

H.G. Natke 
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applied /6/. Fig. 10 contains a cartridge used in f1ight 

vibration testing with its burn diagram. Fig. 11 gives an 

impression of vanes for harmonic excitation durinq f1ight. 

In addition to impulse excitation by stick jerking (Fig. 12) 

and inertia based harmonic electromagnetic excitation, 

randomly controlled exciters are used. The synchronous 

working of the exciters is important for in flight multi-

point excitation (problem when using cartridges!), and it is 

also important that they cause no p1astic deformation or 

similar damage. 

a) 

Fig. 12 ~ Dynamic response due to 
stick jerking 
a) of aileron 
b) of tail unit 
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For measurement and pickups see /3/, Chapter 2. Tele-

processing is not a technical problem. Data handling in 

general (see indicator function for detecting eigenfrequen-

cies etc.) is also commonly used. 

The application of phase separation techniques (also 

with harmonical excitation) is treated cautiously by French 

and German ground vibration test teams /1/2/. However, the 

author gained some experience when he and his co-workers 

developed these methods. Table 1 contains the measured 

eigenfrequencies and damping ratios for the wing model of 

Fig. 2 for a given frequency range of the classical phase 

resonance test (K2) and of the phase separation technique 

Table 1 Estimates of two ground vibration tests 

Tafel 1: Erregungsfrequenzen Nj (Hz] und Teilergergebnisse aus dem 
Standschwingungsversuch nach dem klassischen und 
versuchsmäßig-rechnerischen Verfahren Flügelmodell VFW 6u 

Frei- k2 R1.2.5.m R 1.1.1..30 R/.2.5.30 
heits-

Eigentref eiL Dämpf. Erre!JI!ms- Eif.J.enfre(/C! eflDämff. Ei!frr~. eflDömfl. grad NE;[Hz !/;{I] Ir. N· l zJ tn [Hz} g; (I .[HzJ !1il1 
1 2 3 ' 5 6 1 8 

1 12,09 0,0" 12,U 11,79!0,18 ao2uao12 12,.()7ta01 aoo,~o.oo1 

2 18,00 0,009 18,01 17.99!0,01 0.0Ut0,005 17.99t0,01 o.oo1ta002 

3 (18,2) - 18,25 - - 18,21t 0,01 0,050t0,009 

' 19,51 ao31. 19,62 19,36!0,05 0,055t0,011 19,35t0,(U 0,05,tQ009 

5 21,10 0,013 21,11 21,0St0,02 O,OU~O.OfTJ 2t0710,01 aont 0.002 
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Table 2 Comparison of measured and calculated 
dynamic responses 

Flügelmodell VFW 614 

Tafel2: Vergleich der gemessenen und errechneten 
· Imaginärteilantworten für N= 18,1 Hz 

'I • 4 1J3S kp, p1 • D ltp, s • 1,3, ..... . .,3D 

" 
rr;'"tnrJ ,".,-2 l'rozenluole Fehler bt7ogen avl 

die gemessenen Antworten ron 
,_/Iw tri R7.2. S.JO R7. l.l.30 K1 RI.2.S.30 Rr.r. 4.30 K2 , 2 3 4 s ' 7 I 

I 0,26S 0,270 0,115 -0,038 -0,37 57,2' '"·'2 
2 -1,112 -1,084 -0,923 -a:423 2,51 16,99 61,96 
3 -0,366 -0,340 0,059 -0,003 7,10 83,87 99,18 
~ 0,209 0,224 0,726 0,~26 -7,17. -247,36 -103,82 
5 0,231 0,242 0,761 0,422 -4,76 -229,43 -82,86 
6 0,145 0,155 0,510 0,296 -6,89 -251,75 -104,13 
7 0,151 0,165 0,528 0,289 -9,27 -249,66 -91,39 
8 ·0.021 0.024 0,117 0,073 -14,28 -~57,14 -21.,76 
9 :-0.040 -0,040 -0.041 0,018 0 -2,50 -145,00 

1o• 0.008 0,002 -0.002 0,003 -125,00 75,00 62,50 
11 0,047 -0,034 -0049 0.023 27,65 -(08 11,9,93 
12 Lti,034 -0,030 -0.070 0.046 11,76 -105,88 -235.29 
13 -0.062 -0,0'6 -0,061, 0.033 25,80 -3,22 -153,22 
14 ~.051 -0,045 -0,078 0,0,0 11,76 52,94 ~-178.43 
15 1,126 -1,073 -0,908 -0,422 4,70 19,36 62,52 
16 0,669 -0.643 -0,541 -0,255 3,88 19,13 61,88 
17 0,084 0,081 0,072 -0,032 3,57 14,28 139,28 

~~ 0,102 0,110 0,085 -0,"5 -7,84 16,66 506,86 
-0,091 0,005 -0,031 0,085 - - -

20 0,154 0,141 -0,137 0,082 8.~4 188,96 46,75 
21 -0,182 -0,160 -0,066 0,024 12,08 63,73 113,18 
22 0,010 0,014 0,003 0,036 -40,00 70,00 -260,00 
23 0,034 0,037 0,065 -0,040 -8,82 -91,17 217,64 
24 0,132 0,131 0,104 -0,048 0,75 21,21 13~~ 
25 0,302 0,298 0,190 -0,083 1,32 37,08 127,1,8 
26 0,410 0,407 0,241 -0,108 0,73 41,21 126,34 
27 ~0.532 -0,485 0,082 -0,022 8,83 115,41 95,86 
28 0,533 0.531 0,229 -0,074 0,37 57,03 113,88 
29 0,006 -0,007 -0,002 0,0001 -16,67 66,66 -101,42 
30 ~019 -0,013 -0.004 0,002 31,57 78,94 -110,52 

• M~l. WHI Ii~ I ouß~rholb r*r M~ß MDUi k~il 

H.G. Natke 
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using an effective nurober of degrees-of-freedom neff (order 

of the model used, see /3/) equal to 4 (R1.1.4.30) and equal 

to 5 (R1.2.5.30) /7/. The classical phase resonance test 

suggested an eigenfrequency of 18.2 Hz~ but it was not clear 

and it yielded no damping ratio. A comparison of the esti

mated standard deviations of the eigenfrequencies and 

damping rations obtained by the phase separation method 

indicates the presence of 5 degrees-of-freedom in the 

frequency range considered. Table 2 shows that it is pos

sible to make a comparison of the percentage errors of the 

recalculated dynamic responses with the corresponding 

identified values related to the measured response at a 

given frequency not used in phase Separation identification 

(final prediction error). Column 8 shows unacceptably large 

errors for the results of classical phase resonance testing, 

and the same holds true for the results of the phase Separa

tion method with neff = 4 (column 7). However, the results 

of column 6 show much smaller errors than the others; the 

large error of measuring point 10, for example, is due to 

the small measured value (column 2) • 

Table 3 shows that the phase separation method /4/ 

works well, not only in the case of closely spaced eigenfre

quencies, but also in the case of well separated eigenfre

quencies. An extensive survey of ground Vibration testing is 

contained in /8/. 
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Table 3 Estimates of the phase separation technique 
(Natke-method) applied in ground vibration test 

Tafel 3: Erregungsfrequenzen Nj (Hzl und Ergebnisse 
nach dem versuchsmäßig-rechnerischen Ver-
fahren 

Hubschrauber H3- E2 

Frei- Erregungs Ir. Eigenfrequ. elf. Dämpfung 
hei!J-
gra Nj lHzl NEj lHzl 9j [ 11 

1 2 3 4 

1 11,98 11.48 to,o5 0,085 t 0,008 

2 14,66 14,56!0,02 o,o55to.oo6 

3 16,92 16,89!0,01 0,038 t 0,003 

In b) Fig. 12 shows the time signals of the vertical 

and horizontal stabilizer due to the manual aileron input a) 

of an airplane during flight. Fig. 13 shows one of the 

Laplacian transforms corresponding to Fig. 12b). Not all the 

signals in the time and frequency domain clearly show neff = 

2. The estimation of eigenfrequencies and damping ratios for 

amplitudes of the Laplacian transforms at different chosen 

frequencies leads to results dependent on these frequencies 

/9/. The results are plotted in Fig. 13 for neff equal to 1 

and 2. The damping ratios <ßv1) show a streng dependence on 

the chosen frequencies for the wrong number of neff" 
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Fig. 13 : Phase separation technique applied in a 
flight vibration test : 
criterion for determining neff 

7 I 
chosen frequency 
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neff = 1 

These examples conclude the section on experimental 

modal analysis. The reader can find further applications in 

/8/ and the given refs. The method published in /10/ by Link 

and Vollan1) should also be mentioned here. 

1) See in this context: Natke, H.G. and Cottin, N.: Some 

remarks on the Application of Phase Separation Technique; 
z. Flugwiss. Weltraumforsch. 2 (1978) 3, 199-200 
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2. Model Adjustment 

The applications of parameter improvement methods are 

published in /11/. Publications /12/13/ should be emphasized 

here. The experience gained in /14/ (adjustment of elements 

of the stiffness matrix with measured eigenfrequencies, 

undamped system, weighted least squares (WLS)) is similar 

to that in /13/ (flexibility submatrices and measured eigen

frequencies, least squares (LS)). The airplane model /13/ 

was improved by measured eigenfrequencies up to 20 in number 

while taking submatrices of flexibility influence coeffi-

6 
DEGREES OF 

FREEDOM 

Fig. 14 : Wing- fuselage model 
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cients up to a maximum of I = 9. An example of the improve

ment is shown in Figs. 14 - 16. Fig. 14 shows the modelling 

in the form of beams and a substitution of the undetermined 

connected wing-fuselage system by a statically determined 

model. Fig. 15 provides the convergence of the nonlinear 

procedure and Fig. 16 shows some of the results. As can be 

seen, not all the eigenfrequencies converge to the measured 

eigenfrequencies. But it must be stated that the information 

content only of eigenfrequencies used for improvement is 

limited, and that it is less than that of eigenfrequencies, 

damping ratios and eigenvectors or suitable input/output 

measurements. Improvement Simulations using input and output 

residuals combined with the WLS demoostrate the practicabi

lity of these methods /15/16/ (for a limited number of 

degrees-of-freedom and a limited number of parameters to be 

estimated). The same statement holds true for the equation 

error of the matrix eigenvalue problern combined with an 

orthonormality relation /16/. 
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Fig. 15 : Convergence of correction factors 
on iteration steps 
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Fig. 16 : lmprovement of eigenfrequencies depending on 
iteration steps 
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AIRCRAFT SYSTEM IDENTIFICA TION -
DETERMINATION OFFLIGHT MECHANICS PARAMETERS 

E. Plaetlcbke, S. Welll 
lllltitut fir Flatmecllanlk, BnUDICbWeii·Fiapafea, F.R.G. 

INTRODUCTION 

Identification of aircraft stability and control derivatives from 

flight test data is of growing importance in the design, testing and cer

tification of modern aircraft. The greater need for these derivatives has 

the following reasons: 

• They are used to improve mathematical models for ground and 

in-flight aircraft simulators. 

eThey serve as a basis for the designofflight control systems. 

• They define a given aircraft and can be used for verification of 

specified flying/handling qualities. 

eThey are used for correlation with analytical and wind tunnel data. 

• They help to reduce prototype testing time and costs. 

The most commonly used procedure for aircraft system identification 

is shown in figure 1 (cf. Hamell). This paper covers some aspects indi

cated in the figure, such as parameter estimation methods, optimal input 
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E. Plaetschke - S. Weiss 
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RESPONSE 
ERROR 

ESTIMATION 

Figure 1 Identification procedure 

design and error sources in aircraft system identification. Because of 

space limitation we will not deal with instrumentation and filters, 

though the accuracy of the instrumentation system highly affects the 

quality of the identification results. Flight mechanics nomenclature is 

given in the appendix. 

PARAMETER ESTIMATION METHODS 

Maximum likelihood estimation concept 

The aircraft parameter estimation problem can be defined quite sim

ply in general terms (cf. figure 1). The flight vehicle under investiga

tion is assumed to be modeled by a set of dynamic equations containing 
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unknown parameters. To determine the values of these parameters, the sys

tem is excited by a suitable input, and the input and actual system re

sponse are measured. The measured response of the flight vehicle is com

pared with the estimated response of the mathematical model and the dif

ference between these responses is called the response error. For each 

possible estimate of the unknown parameters, a probability that the model 

response attains values near the observed response· values, can be de

fined. The estimates which are referred to as the maximum likelihood es

timates, are chosen such that this probability is maximized. 

Maximum likelihood estimation has many desirable statistical charac

teristics; it yields asymptotically unbiased, consistent, and efficient 

estimates. The maximum likelihood estimator also provides a measure of 

the reliability of each estimate. This measure, analogous to the standard 

deviation, is called the Cramer-Rao bound or uncertainty level (cf. 

Iliff 2). 

Parameter estimation in the time domain 

The dynamic system, the parameters of which are to be estimated, is 

described by the following model: 

x(t) - f [x(t), u(t), ß] 

y( t) • g [x( t), u( t), ß] 

x(t ) • x 
0 0 

(1) 

(2) 

x, u and y are the vectors of the state, control and observation varia

bles, ß denotes the vector of the unknown parameters. The observation 

variables are measured at N discrete time instants 

z{k) • y(k) + v{k) k • 1, ••• , N • (3) 

In this equation z denotes the model output and v the measurement error 
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which is aseumed to be stationary Gaussian white noise with zero mean and 

covariance matrix R. 

In general the initial values x of the state variables are unknown 
0 

and have to be estimated together with the model parameters s. In addi-

tion to this, one has to account for systematical errors 6u and 6z in the 

measured input and output variables. All these unknowns together form the 

parameter vector 

(4) 

Usually not all components of 9 can be identified separately and the vec

tor has to be reduced to an identifiable subset of unknowns. 

:fhe unknown parameterB are obtained by maximizing the likelihood 

functional which is defined as the conditional probability density of the 

measurements z for given 9 and R. An equivalent problem is the minimiza

tion of the negative logarithm of the likelihood functional. For the 

mathematical model (1) - (3) this leads to minimizing 

L • t I [z(k) - y(k) )T R-1 [z(k) - y(k)] + ~ lniR I 
k•1 

with respect to 9. 

(5) 

The minimization of the cost function (5) is a nonlinear optimiza

tion problem vhich can be solved by direct minimum search methods such as 

the algori thlll of Powell, Rosenbrock or Fleteher ( cf. Ja tegaonkar and 

Plaetschke3). Such methods, as they are available in Ioftware libraries, 

are very robuet but do usually need a lot of computation time. 

An alternative algorithm is the quasi-linearization or modified 

Newton-Rapheon method. This method leads to a system of linear equations 

for the parameter increments 69 
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(6) 

The solution of this system leads to new estimates of the unknown para

meters. These are used to update the mathematical model of the flight ve

hicle, providing a new estimated response and, therefore, a new response 

error. The updating of the mathematical model continues until a conver

gence criterion is satisfied. 

Solving (6) requires the calculation of the sensitivity matrix 

Integration of the sensitivity equations 

(a3x8) • af ax af • ax aa+aa 

1l. .. Ja. ax 1& 
ae ax ae + ae 

(7) 

(8) 

(9) 

which are derived from the model equations (1), (2) by differentiation 

w.r.t. e, gives a solution for (7) but these sensitivity equations have 

to be derived explicitely for each specific nonlinear model. Therefore an 

approximation of the sensitivity coefficients by finite differences 

1l. • y( e + 6 e> - y( e) 
ae 6e (10) 

is preferred to an explicit solution of (8), (9). 

The quasi-linearization method also yields direct information about 

the accuracy of the estimated parameters. The matrix occurring in the 

system of linear equations (6) is equal to the Information matrix 

\' 1l_ T -1 JI. 
J • L < ae> R ae • 

k 
(11) 
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As the maximum likelihood estimate is asymptotically unbiased and effi

cient the inverse of J is a good estimate for the estimation error co

variance matrix 

(12) 

(6) is solved in each iteration and therefore the Cramer-Rao bound for 

the estimation error is available in each iteration step. 

Linearization of the model equations (1), (2) in the neighbourhood 

of a reference point and shifting of the state variables by their initial 

.values leads to the following model (cf. Plaetschke and Mackie~): 

• x•Ax+Bu+b 
X 

y•Cx+Du+b y 

x(t ) • 0 
0 

(13) 

(14) 

x, u and y are now deviations of the state, control and observation vari

ables from the reference state. The unknown coefficients 8 occur in the 

matrices A, B, C and D in linear form. These coefficients are called the 

stability and control derivatives. The unknown initial conditions and 

systematical errors are estimated as lumped parameters bx and by' all 

components of which are identifiable if the system is observable. 

The cost function that has to be minimized is the same as for non

linear modele (cf. (5)), therefore quasi-linearization again leads to the 

iterative solution of (6). For linear systems the sensitivity equations 

(9), (10) can be derived by simple matrix operations 

1I. 
ae 

(15) 

(16) 
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These equations are valid for all linear systems and hence no approxima

tion of the sensitivity coefficients by finite differences is necessary. 

Often it is necessary to use several maneuvers with different infor

mation to determine one set of derivatives. The bias vectors (bx and by) 

or the initial values and systematical errors (x , 6u and äz) will then 
0 

differ for each maneuver. Another extension is the inclusion of time de-

lays for several signals as additional parameters. 

Parameter estimation in the frequency domain 

There are two main possibilities for model building in the frequency 

domain. In the state equation representation the model 

j w x( w) • A x( w) + B u( w) (17) 

y( w) • C x( w) + D u( w) (18) 

is derived from the linear model in the time domain by discrete Fourier 

transformation. Solving these equations yields 

x(w) • (jw I - A)-1 B u( w) (19) 

y(w) • [c (jw I- A)-1 B + D] u(w) • F(jw) u(w) '(20) 

where I denotes the identity matrix and F the transfer function matrix. 

For this model the parameter vector consists of the unknown elements 

occurring in the matrices A, B, C and D. No bias parameters need to be 

estimated. The cost function that has to be minimized in this case is 

L • L (y- F u)* s-1 (y- F u) + M lniSI • 

'\ 
(21) 
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~, k = 1, ••• , Mare discrete frequencies and S denotes the output error 

covariance matrix. As can be seen from (21) the optimization criterion 

for this model formulation is the fit of the frequency responses of 

flight vehicle and mathematical model (cf. Marehand and FuS). 

Another possibility is the model formulation by transfer functions 

(22) 

The parameter vector for this model consists of the unknown coefficients 

of the numerator and denominator polynomials occurring in the transfer 

functions (22). The cost function for this case is 

L .. L L 
i k 

(23) 

with M discrete frequencies ~ and Fim denoting the measured transfer 

functions (i.e. transfer functions computed from the measured data). 

OPTIMAL INPUT DESIGN 

Within the procedure of aircraft parameter identification the design 

of input signals is the first step. Thereby the limitations of the fol

lowing steps - as there are: selection of the instrumentation system, 

flight testing under constraints and disturbances, choice of an appropri

ate identification algorithm - have to be taken into account. For the 

design of test signals the following aspects are of importance: 

• The inputs have to excite the aircraft modes appropriately, such 

that parameter variations cause variations of the measured time 

response (Parameter Sensitivity). In this case the parameters can 
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be identified accurately. 

• Amplitude, bandwidth and slope of the input signals have to be 

bounded such that first, the signals can be realized by the specific 

actuators (Realizability), and second, the modeling assumptions of 

linearized decoupled equations of motion are not violated (Linear

ity). 

• The noise characteristics and bandwidth of the sensors as well as of 

the disturbance process (gusts) have to be considered. 

• The inputs should be simple enough to be implemented easily by a 

pilot (unless a fly-by-wire system is available) and the resulting 

response of the aircraft should not endanger the pilot (Pilot 

Acceptability). 

• For optimal input signal design good a-priori models of the aircraft 

motion have to be available as to minimize the estimation error var

iance of the derivatives (A-Priori Model). 

Input design methods 

The design of input signals can be performed in the frequency domain 

and in the time domain considering system criteria and estimation error 

criteria {cf. Plaetschke and Schulz6). Starting with identifiability in

vestigations in the frequency domain, a first method yields multistep in

put signals which fulfill specific spectral requirements (cf. Koehler7). 

In figure 2 such a multistep signal and its power spectral density are 

presented. Because of its characteristic shape it is called "3211 "-signal 

(3 time units positive, 2 negative, 1 positive, and 1 negative). By the 

choice of the time unit At the spectrum can be shifted to match the re

quired frequency region. 

A second way of input design is based on the optimization of dif

ferent measures of the estimation error covariance matrix P of the para

meters. The volume V of the estimation error ellipsoid is a convenient 

measure of the concentration of the probability density about its mean. 
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Figure 2 Frequency domain comparison of various input signals 

Since V - I det(P), the minimization of det(P) gives a relevant optimi

zation criterion: 

min {det(P)} + u t(t) • 
u(t) op (24) 

For efficient estimates the estimation error covariance matrix P is equal 

to the inverse of the Fisher information matrix J. Therefore criterion 

(24) is equivalent to the maximization of the determinant of J: 

max {det(J)} + u (t) • 
u(t) opt (25) 

Based on this criterion, Mehra8 developed a method for designing optimal 

inputs for linear systems. The method yields optimal frequencies and am

plitudes for the inputs. 
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Other criteria for optimal input design were used by Schulz9 

max {tr(J)} + u t(t) 
u(t) op (26) 

and by the Delft University of Technology (DUT, cf. MulderlO) 

min {tr(P)} + u (t) • 
u(t) opt (27) 

Application of optimal input signals in flight test 

Five optimal input signals - doublet, "3211 "-input, Mehra-input, 

Schulz-input and DUT-input - were applied in a joint Dutch/German air

craft parameter i.dentification flight test program (cf. Plaetschke, 

Mulder and Breemanll). One of the goals of that program was to study the 

effect of the various input signals on the identification results. The 

test aircraft - a De Havilland DHC-2 "Beaver" - was equipped with an 
electro-hydraulic control system. Thus each flight test maneuver could be 

exactly reproduced any number of times, allowing statistical analysis of 

the resulting data. 

Figure 3 shows the time histories of five optimal elevator inputs 

used in flight test. In order to avoid measurement errors due to the low 
pass flight test instrumentation filtere, each control input signal re

ceived the same filtering before being applied. Moreover, without pre
filtering the step-type input signals (doublet and "3211") could not have 

been re,lized by the electro-hydraulic actuators. 

The evaluation of aircraft parameters from flight test data was car

ried out independently by DFVLR and DUT using different identification 

methods and modele. At DFVLR a maximum likelihood identification algo

rithm for linear systems was applied. The DUT method of parameter identi-
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fication is based on a decomposition into separate aircraft state estima

tion followed by aerodynamic model identification. The solution of the 

state estimation problem results in accurate aircraft state trajectories. 

Aerodynamic parameter estimation then requires only the solution of six 

separate linear regression problems. 

1. Doublet - Input 

o~:~ n n . 
6.-0.12 r u-.----, u-.--------~ 

2. "3211 "- Input 

0.08~ .. -~:: CJ&~---!Jrv~-------~ 
3. Mehra- Input 

0.08~ rad 
6. 

-0.12 1------~---.....&.-...... -~---...,1;;;:~ ..... __.. 
4. Schulz - Input 

... ~~~ 
-0.15~ 

5. OUT -Input 

0.1 

··-~:~ o • n~ 
TIME 

Figure 3 Time histories of five optimal elevator inputs 
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-~5.-------------, 
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-1.9 r-------------, 
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1 Doublet - Input 

2 "3211"- Input 

3 Mehre- Input 

4 Schutz - Input 

5 DUT- Input 

-0.8 .--------------, 

-1.0 ~....1.-~--i.-~---="'""" 
1 2 3 4 5 

-0.08 .-----------,1.------

r-1---ri 
-0.13 L-~--~--t---~--=-... 

2 3 4 5 

-0.05 r------------, 

- 0.10 ..____.,___..__-'-_-'-_ __.__.. 
1 2 3 4 5 

Figure 4 Identification results (Beaver) 

Identification results for one nominal flight test condition defined 

by true airspeed of 45 m/s at 6,000 ft pressure altitude are presented in 

figure 4. It shows six of the most important longitudinal and lateral-
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directional derivatives for the two data analysis methods and the five 

input signals. As each input signal was applied nine resp. ten times, 

sample means and standard deviations were calculated and presented in the 

figure. For the longitudinal derivatives the results differ mainly due to 

the data analysis method and the aerodynamic model used, while for the 

lateral-directional derivatives the results differ mainly due to the in

put signal type. In the longitudinal case the differences are attributed 

to different mathematical model structures. In the lateral-directional 

case however, the mathematical models were nearly identical. Consequent

ly, sample means and standard deviations correspond closely. The correla

tion between parameter estimates and input signal type is attributed to 

the input signal amplitudes being too large for the validity of the line

ar models used. Finally, as can be seen from figure 4 some of the identi

fication results deviate considerably from their a-priori values. In this 

respect, all input signals, which were designed on the basis of those a

priori values, are only suboptimal. 

ERROR SOURCES IN AIRCRAFT SYSTEM IDENTIFICATION 

Erroneous identification results are mainly derived from incorrect 

data and/or incorrect modeling. Possible data errors are due to 

• incorrect sensor calibration, 

• sensor zero shifts, 

• time shifts, 

• incorrect sensor location, 

• disregarding sensor and filter dynamics. 

Modeling errors may result from the use of 

• linear models to describe nonlinear phenomena, 

• decoupled equations of motion when cross-coupling effects can 

not be neglected, 

• models disregarding process noise to analyse flight test data 

obtained in turbulent air, 

• low order models to desribe high order systems, 
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• incorrect stability augmentation system modele in closed loop 

system identification. 
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In this section some examples will be given which show how the er

rors mentioned above affect the identification results and what can be 

done to account for them. For more examples we refer to Iliff.2 

Data compatibility checking 

Incorrect sensor calibration, zero shifts and time shifts can be de

tected and eliminated by data compatibility checking (sometimes referred 

t~ as flight path reconstruction). For this purpose the nonlinear kine

matic equations of the aircraft motion are used. They define the correla

tion between the various data signals. When high accuracy measurements 

are made of specific aerodynamic forces Ax' Ay' Az and rotation rates p, 

q, r more reliable time histories of the noisy air data (true airspeed V, 

angle of attack a, angle of sideslip S, dynamte pressure q etc.) can be 

estimated. Unknown calibration factors, zero shifts and time shifts are 

estimated simultaneously. 

For the purpose of illustrations, data compatibility checking is 

carried out for the variables in the longitudinal motion of the DFVLR re

search aircraft HFB 320 ''Hansa" (cf. Jategaonkar and Plaetschke 3). The 

kinematic relations 1ncluding calibration factors and zero shifts read: 

State equations 

Ü • Axm - Mx - (~ - llq)w - g sin9 

w • Azm - Mz + (~ - llq)u + g cos9 

- u 0 

w(t ) • w 
0 0 

(28) 
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Observation equations 

with 

V .. / u2 + w2 + t:.V 
m s s 

am • arctan (w /u ) 
8 8 

a = k- ..e ( u 2 + w 2) + t,Q 
"111 q 2 

w = w - (q - t:.q)x8 s m 

E. Plaetschke- S. Weiss 

(29) 

(30) 

where the subscript m indicates measured variables. Airspeed V and angle 

of attack a were measured by a flight log at the nose boom with offset 

distances x • 10.992 m and z • 0.556 m from the center of gravity. s 8 

A comparison of the measured and reconstructed time histories showed 

that the measurements of airspeed V, angle of attack a and dynamic pres

sure q bad slight time delays. In a further identification, the unknown 

time delays were included in the model as additional parameters (cf. 

Plaetschke 12). Identification results obtained with the extended model 

are shown in figure 5. As can be seen, the measurements are now fitted 

well by the reconstructed time histories. 

Filter dynamics 

The effect of filter dynamics on the identification results is shown 

in an example given by Marchand.l3 In a joint German/French research pro-
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Figure 5 Data compatibility checking with estimation of 
time delays in V, a and q (HFB 320) 
- measured +++ reconstructed 
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gram the aerodynamic derivatives of a Do-28-TNT model were to be identi

fied from free flight tests. As can be seen from figure 6, first analysis 

of the flight test data resulted in poor curve fitting for the pitch 

acceleration. This phenomenon could be explained by the fact that the 

pitch rate gyro output was filtered. As no Information on the filter dy

namics was available, a first order filter with unknown time constant was 

modeled and included in the identification. Figure 6 shows that by this 

an excellent fit between measured and identified pitch acceleration could 

be achieved. The time constant was identified as T • 40 ms. This value 

was confirmed by a later investigation of the measurement system. 

Nonlinear modeling 

For determination of the aerodynamic derivatives of a Do-28-TNT 

model, a series of experiments was conducted in the facility for dynamic 

Simulation in wind tunnels. Analysis carried out here is related to the 

experiments in which the model was fixed in the vertical axis but having 

pitching motion freedom. The model was excited by a doublet evelator in

put. The following linear system representation was initially considered 

(cf. Jategaonkar and Plaetschke3): 

State equations: 

ci • Hq q + "e e + H ~ ~e 
e 

ä- q 

Observation equations: 

e • 
m 

e 

(31) 

(32) 
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Figure 6 Effect of filter dynamics (Do-28-TNT free-flight model) 
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Estimation results based on the above linear model are shown in the upper 

part of figure 7. The agreement between the measured and the estimated 

responses is poor. 

By inspection of the measured time histories, it was detected that 

the pitch angle response did not change linearly with the elevator input, 

instead deviated after a definite angle 9. This phenomenon is attributed 

to the fact that one of the feeder cables was touching the body of the 
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Attitude 

2l 0 ~
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-2.5 ..___.__.....~.. __ .__........____.. __ .__ ................. __ ..___. 
0 1 2 s 

Time 

Figure 7 Effect of nonlinear modeling 

model for small angles of pitch. That nonlinear effect has been modeled 

by considering two Independent values for the derivative M0 as follows: 

for 
(33) 

for 

This results in a system which is linear in the state and control vari-
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ables but discontinuous in one of the parameters. In addition to the de

rivatives, the kink point e8 needs to be estimated. Identification of 

this nonlinear system yielded the results shown in the lower part of 

figure 7. The agreement between the predicted and the measured responses 

is now good. 

Rigid body model (8 DOF) I 
0.3 

red 
aec2 

q 0 

time 
aec 8 

lnclusion of Rotor DOF I 
0.3 .....-----...------....., 0.3 .------A·-------, 

rad 
aec 2 

q 

-0.4 L--------------J 
0 time aec 8 

8 DOF (1st order rotor) 

--CH- 53A flight teat date 

rad 
aec2 

-0.4 L------------J 
0 

time 
aec 8 

8 DO F ( 2nd order rotor ) 

--- regreaalon fit 

Figure 8 Rotareraft modeling 
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High order systems 

In general, one should try to separate the different modes of motion 

of the dynamic system under investigation. This leads to several low or

der subsystems with a small number of parameters which can be identified 

independently. For example, the equations of motion of a conventional 

aircraft operating at normal flight conditions can be decoupled into the 

longitudinal and the lateral-directional motion. For the helicopter how

ever, Separation into these modes is in general not possible because of 

the rotor coupling. The full six-degree-of-freedom equations of motion 

have to be used to model the fuselage dynamics. In addition, the rotor 

dynamics has to be included. It can be approximated by the motion of the 

tip path plane which has three DOF. Thus a nine DOF model with a large 

number of parameters results. 

Figure 8 shows the necessity of explicit rotor modeling (cf. Hall, 

Gupta and Hansenl~). Here, flight test data of a Sikorsky CH-53A helicop

ter are compared with the pitch acceleration response of three different 

models. When only the fuselage motion is modeled the fit is poor (upper 
part of the figure). An inclusion of the rotor dynamics leads to a signi
ficant increase in model accuracy (lower part of the figure). Thereby it 

is sufficient to model each rotor DOF as first order differential equa

tion. Hodeling as second order differential equation leads to no further 

improvement. 

Closed loop system identification 

Most modern aircraft are flown with engaged stability augmentation 

systems (SAS). As for security reasons it is often not allowed to remove 

the SAS, identification experiments have to be performed on aircraft op

erating in closed loop. In order to obtain a correct model of the augmen

ted aircraft also the SAS must be identified. 
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Figure 9 Identification of roll stability augmentation system 
--- Flight test data +++ Model output 
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An example of stability augmentati~n system identification is given 

by Koehler and Wilhelm.lS In figure 9 flight-measured and computed data 

of a roll augmentation system with two model structures are compared. In 

addition, the response of the SAS model provided by the contractor 1s 
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shown. Inputs to the roll augmentation system are roll rate and aileron 

stick deflection. The identification was carried out applying multiple 

maneuver evaluation (four time segments). It can be seen that the con

stant feedback model results in a good fit in the first and fourth time 

segment, whereas the fit in the two middle time segments is unacceptable. 

Hence, the dynamics of the roll SAS can not be neglected in this case. 

The third diagram shows flight test data and identified model response 

when augmentation system dynamics is taken into account. Here the curve 

fit is excellent in all time segments. 

APPENDIX - NOHENCLATURE 

Flight mechanics notation is shown in figure 10 (cf. Etkinl6). Here 

x, y, z denote the axes of the body-fixed reference frame, X, Y, Z longi

tudinal, lateral and vertical aerodynamic force, u,- v, w longitudinal, 

lateral and vertical velocity, L, M, N rolling, pitching and yawing mo

ment, p, q, r roll, pitch and yaw rate, 6a' 6e' 6r aileron, elevator and 

rudder deflection. The Euler angles, i.e. roll, pitch and yaw angle are 

denoted by •• e, ' (not indicated in the figure). The flight Velocity 

vector! can be given either by the components (u, v, w) or by its magni

tude V and the two flow angles, i.e. angle of attack a and sideslip angle 

8 (see figure 11). 

The aircraft equations of motion result from the application of 

Newto~s laws of motion. For our purposes, the aircraft is considered to 

be a rigid body and symmetric w.r.t. the x,z-plane. The resulting force 

and moment equations are completed by the kinematic relations between the 

angular rates and the Euler angles. This leads to a system of differen

tial equations with state variables u, v, w, p, q, r, t, e, ! and control 

variables 6a, 6e' 6r' ••• The aerodynamic forces and moments are expanded 

into Taylor series w.r.t. the state and control variables. The coeffi

cients of the Taylor expansions are called the "aerodynamic derivatives". 
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TN,r 

Z,w 

z 

Figure 10 Flight mechanics notation 

z 

Figure 11 Flow angles 
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1 - Introduction 

Nowadays, the vibration problern is one to be faced at an early 

stage of ship design to avoid uncomfortable service condition or 

heavy troubleshooting interventions. Good vibratory ship perfor

mance, related to a maximum allowable level, is usually requested 

according to specifications by the ship owners, which refer to the 

ISOcode under publication in its final form. Moreover, the deliv

ery trials include standard vibration tests to check the vibratory 

levels. This has caused the shipyards, over the last ten years, to 

seek 1mproved methods of predicting ship vibration in order to 

protect themselves, as far as possible, against the risk problems 

occuring once the ship has been launched. Today, well-defined 

methodologies are available and can predict w1th increasing accura

cy both the magnitude of the exciting forces and the level of the 

structural response at all stages of design. However, although 

well-established from the theoretical and methodological points of 

view, these methods still require continuous improvements in order 

to cope with the increasing demand in terms of ship structural 

complexity and comfort requirements. Moreover, even the most so

phisticated theoretical investigations need to be complemented by 

data <such as damping coefficients for ~he evaluation of the struc

tural response> which can only be obtained through specific experi-
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mental tests carried out on similar ships. This involves, in addi

tion to the routine delivery trials, the assessment of the real 

vibratory Ievel of the ship in service by carrying out specific 

complementary investigations, in order to improve the knowledge 

necessary to deal with the vibration problem at the design stage 

successfully. The ship response depends both on the magnitude of 

the exciting forces and on the dynamic properties of the system at 

the excitation frequency. The dynamic properties are easily identi

fiable at any point by examining the response to a given unit 

excitation in the frequency range of interest. The frequency re

sponse thus obtained has peaks corresponding to the natural fre

quencies. Their amplitudes depend on the energy associated with the 

point at the actual mode as well as on damping. Therefore, identi

fying the ship v1bratory response implies knowing its modal parame

ters, i.e. natural frequencies, modes and damping. The identifica

tion of the modal parameters: 

alallows methodologies for predicting ithe natural frequencies and 

modes of a ship to be improved by refining the theoretical

experimental correlation; 

blprovides useful information on the vibration behaviour of the 

ship for troubleshooting purpose; 
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clalloMs the prediction of the structural response for a g1ven 

excitation tobe verified, as it provides a correct definition 

of the damping. 

This last point is very 1mportant becau~e the ship vibration re

sponse can be predicted if natural frequencies, modes, excit1ng 

forces and damping are knoMn. HoMever, Mhile the first three param

eters can be successfully calculated, the last one can only be 

estimated on the basis of statistical data from experimental tests 

and modal parameter ide~tification on sJmJlar ships. It is impor

tant to note that, for a suitable development of points al and bl, 

it is necessary! after having identified frequencies and modes, to 

kno" the mobility (response per unit excitationl at the most ~iq

nJficant points. Damping is certainly, among the modal oarameters, 

the most difficult to evaluate and the most sensitive to the test 

procedure, the accuracy of measurements and the effect1veness of 

the analysis method. Variou' types of measurements enable identifi

cation of modal parameters, but the most commonly used and effec

tive are certainly exciter tests. Currently, the hull damping is 

modelled by combining all energ~ dissipation effects into a single 

damping factor, although, physically, several dissipation mecha

nisms <structural, hydrodynamic and cargo damping> contribute in 

different Mays, depending on structure and ca~go types and on the 
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frequency range under consideration. Moreover, the energy is not 

dissipated uniformly along the ship because of local structure and 

configurations, so that on real ships the damping coefficient also 

changes from point to point. L1ttle reliable data concerning damp

ing is available worldwide because of the complexity of this param

eter and the uncerta1nties ass9ciated with its identification. In 

this section, some analysis procedures for the identification of 

the modal parameters are presented, tagether with numerical exam

ples from which the rlegree of effectiveness and reliability of some 

procedures and problems arising from their application can be in

ferred. When considering the results, it must be remernbered that 

the basis of the analysis consists of data obta1ned ~rom experimen

tal tests: therefore, identification procedures also include as

pects related to test methodology, acquisition and treatment of the 

signal, all of which have a substantial effect on the quality of 

the final results. Several methods will be reviewed, ranging from 

simple ones (Response Curve, Phase Variation, Logarithmic Decre

ment> to others which are more sophisticated:Phase Resonance [1], 

Phase Separation [2], 

Expor1ential Method [3], Maximum Entropy Method [4]. 

453 
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2 - E~perimental Test Procedures 

ldentification of the modal parameters is carried out by analysing 

the vibratory response of the ship subjected to an e~citation. The 

following types of e~citation can be applied to the ship: 

- steady state excitation; 

- impulsive excitation; 

- random or pseudo-random excitation. 

To day the first method is the most widely used to identify modal 

parameters. 

2.1 - Steady-State E~citation • 

It is well-known that the transfer function of a l1near system is 

obtained through harmonic analysis by applying sinusoidal signals 

of increasing frequency and calculating for each one the rate of 

the input-output Fourier Transform, normalized with respect to the 

input spectrum modulus. This procedure requires the frequency vari

ation of the input signal to be very slow, so that steady-state 

excitation can be assumed. For cerreit determination of the trans

fer function, analysing the signal at each interesting frequency 
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takes a lang time. Due to the fact that all signals at frequencies 

other than the input frequency are filtered out, steady- state 

testing has the best signal-to-noise ratio at the mea~urement fre

quency of all excitation techniques. This type of excitation is 

most commonly used with harmonic exciters. 

2.2- Impulsive Excitation 

Impulsive excitation enables to determine the frequency response 

simply by exciting the ship structure with an impact load. This is 

possible since an impact is an approximation of an impulse function 

which contains energy at all frequencies. However, particular at

tention must be devoted to the selection of a proper impactor and 

signal processing technique. Impact tests are generally carried out 

using two types of actuators: wave impact <slamming and sweep

ingl,and hammers. Several identifications were performed using wave 

impact excitation [5,6,14]. Hammers were extensively used in the 

past to excite the superstructures [24,25]. Recently a hammer was 

used successfully to excite the hull [26]. However, problems still 

exist for large ships with small response amplitude, where 

high-sensitivity detectors with low signal-to-noise ratio and prop-

er analysis techniques are 

sults. Impact tests also 

necessary to obtain satisfactory 

show implicit· problems related to 

re-

two 

455 
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characteristics of the structures, i.e. linearity and damping 

- since an impact has a very high ratio of peak to r.m.s. energy 

content, it tends to excite all the non-lJnearities in a system. 

For this reason, impacting does not work well on a non-ltnear 

system as the hull; 

- the amount of damping in the system is also important: when 

there is too little damping, the response s1gnal does not decay 

to zero within the duration of sampling, tn severe leakage er

rors may occur. On the other hand, if the damping is high, no1se 

becomes the problern as, whi le the> response signal decays to .:E'•·o 

rapidly after the start of sampltng, any noise will be pr~sent 

throughout. To improve these condit1ons, proper s1gnals process

ing techniques must be selected. 

2.3 - Pseudg_-Random Excitation 

Pseudo random input testing has become a practical method of fre

quency response measurement s i r·ce the deve l opment of the d i lJ i ta I 

Fourier analyser [151. Using the fourier transform, periodic input 

1s not restricted to sinusoidal and can have almost any spectrum 

content. The excitation signal is created in the frequency domain 

and transformed to the time domain. lt is always periodic within 
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the sample window, and therefore does not suffer from the leakage 

errors of pure randomness: this is one of the important advantages 

of pseudo-random excitation. The others are : 

- it is fast; 

both the amplitude and frequency contents of the excitation sig

nal can be precisely controlled; 

- it has a low ratio of peak to r.m.s. energy; 

- noncoherent noise can be conveniently averaged out. 

However, for extremely environments, the process is not faster th,n 

swept 'iine; 

leakage errors are eliminated by using periodic input within the 

sample window of the Fourier analyser. 

On the other hand, its disadvantages are : 

- high sensitivity to rattle: loose components generate periodic, 

coherent noise which cannot be averaged out and appear as spikes 

on the frequency response measurement. This can cause difficul

ties in curve-fitting the data to extract modal parameters; 

the energy input at any frequency is small compared to 

swept-sine: the reason, of course, is that all frequencies are 

excited simultaneously. 

457 
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No references have been found regarding relevant applications of 

the method to the identification of the modal parameters of the 

ship hull. 

3 - Analysis Methods 

The most commonly used or promising analysis procedures for the 

identification of the modal parameters will be described. We will 

consider in turn : 

-Response Curve Method <RCM>; 

-Phase Variation Method <PVM>; 

- Logarithmic Decrement Method <LDM>; 

-Phase Separation Method <PSM>; 

- Exponential Method <EM>; 

-Phase Resonance Method <PRM>; 

-Maximum Entropy Method <MEM>; 

- Circle Fitting Parameter Estimation Method <CFPE>; 

- Analytical Identification Procedure <AIP>. 

Most applications of these procedur~s have as common data the 

recording of the response to a steady-state excitation. For the 

PSM, PRM and RCM, which work in the frequency domain, the response 
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operators are used, whereas for the EM, which werk in the time 

domain, the inverse Fourier tr~nsform of the response operator is 

used when the method is applied to the analysis of exciter test 

response. This is due to the fact that the EM works on limited time 

series of a typical transient nature, and it can be shown that the 

1mpulsive response of a system can be obtained by applying the 

inverse Fourier transform to its response operator. 

3.1 - I~e Response Curve Method 

This method derives directly from the characteristic equation of 

single degree of freedom system [5,61. The absolute value of the 

transfer function, defined here by the ratio of dynamic displaceme-

nt/static displacement 1n the frequency domain, can be written: 

(I) 

where w. denotes the <circularl eigenfrequency of the undamped 

system. 

Taking into account the low damping values (i. e. t«l) one can 

assume that the maximum amplitude corresponds to the resonance. 
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For cu•cu. one can write: 

IH(w) I.,.,.=IH(wo)l= 21~ 

For slight variations araund the resonance, it is posstble to 

write: 

Substituing in <11 and droppinq higher-order terms, ooe obtains: 

The amplitude near the resonance can be expressed a~ a fraction of 

the maximum, i.e.: 

n > I 

Combining the two formulae, one obtains: 

t • L1w 
Wo~ 

considering <-3 dB pointl i.e. 

r;; L!w 
n•'IL.-tt•-

Wo 

(3) 

(4) 

(5) 

Finally, considering two points respectively on the right and on 

the left of the peak, one obtains: 
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(6) 

where: 

w , .. w 0 - Aw 

3.2 - The Phase Variation Method 

This method relies on the determination of the tangent of the phase 

angle between the excitation and the response near a resonance 

frequency C5,1bl. This analysis requires the resonance curve to be 

available in complex form. The damping ratio can be obtained as 

follows : 

w:-wz 
~ •I 2 tan r I 

W 0 W 
(7) 

where: 

w. is the resonance circular frequency; 

~ is a circular frequency close to ~. 

~r is the tangent of the phase angle between excitation and 

response at w • 
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The main problem in using this method is that the phase angle curve 

exhibits a sharp drop as it approaches the resonance frequency. 

3.3 - The Logarithmic Decrement Method 

This method is based on the evaludtion of the vartation of the 

structural response caused by a sudden variation of the exc1tat1on 

[7]. The experimental tests are carried out by stopping the excita-

tion and recording the amplitudes for a defined period of time [5). 

The logarithmic decrement can be evaluated as follows: 

I a,. 
Lt=-ln--· 

P a,.+P 
(8) 

wher&: 

o.• is the first amplitude observed; 

P = is the number of observed periods. 

The damping ratio can be easily obtained from the logarithmic 

decrement as follows: 

Lt 
~--2rr 

(9) 
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The method 1s particularly interesting when the damping is very 

small and the structure is excited at a frequency corresponding to 

an uncoupled mode. At higher frequencies, however, a modulation can 

occur between the excited mode and the closest ones, which can 

introduc~ errors in the evaluation of the logarithmic decrement. 

3.4 - The Phase Separat1on Method 

Th1s method [2,4,5,61 belongs to the normal mode testing category, 

and ma~es use of a modal transformation in terms of complex mode~ 

in order to linearize the transfer function matrix : 

( 1 0) 

where: 

{Y' ,) .. r-th mode of Vibration: 

normalized in such a manner that all the generalized masses are 

equal to 1 

y,.w,- loss factor. r-th natural frequency; 

1J- square of the excl tation frequency. 
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The advantage of this approach lies in the fact that, in addition 

to mass and stiffness, the damping matrices are involved in the 

modal transformation. The damping matrix is assumed to be the imag-

inary part of a complex stiffness matrix, <hysteretic dampingl. 

h. IPHA~E SEPARATlOH HETIOQI 

Figure 1 - Phase Separation Method: 
Extraction of values from Transfer Function. 

As is shown in Fig. 1, two sets of values <response versus frequen-

cyl are extracted from the transfer function by considering two 

po1nts on the left and on the right of each natural frequency in 

the response diagram. Similar operations are performed on the 

transfer functions of all the measurement points at the same fre-
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quency va lues •• and .,. • 

Two sets of transfer functions are thus derived for the two sets of 

frequency values. The modal parameters of the system can then be 

identified by equating the solutions of the two sets and using a 

polynomial matrix approach. 

3.5 - ~egnential Method 

The Exponential Method used at CETENA l3,Bl derives from the opti-

mization of an exponential algorithm developed for the first time, 

by Spitznogle and Quazi [9] to analyze short, non-periodie damped 

Ci.e. transient) signals. The method can also be used to analyze 

data from steady-state trials Cresponse operator), as it can be 

shown that the impulsive response in the time domain can be ob-

tained by inverse Fourier transform of th• respons• operator Cfre-

quency response function). 

Aseries of numerical values is obtained by sampling the time 

series, which is decomposed into M exponential functions of the 

Laplace variable 

:(n•0.1, ......• 2N-1)(11) 
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In most casPs, M is unknown; an estimation of the solutions of the 

system of linear equations can be made using the Ieast-square 

method. In developing the algorithm, an auto-regressive approach 

has been selected. Assuming that the order of the exponential model 

equals that of the auto-regressive one. the problern is now to 

evaluate the order of the latter. ThP Akaike Information Criterion 

<AIC> [10,11) has been used for the evaluation of the order and 

coefficients of the auto-regressive model that best fits the start

ing time series. 

Finally, the parameters typical of the harmonic components of the 

original signal (complex amplitude, frequencies and dampingl can be 

derived via the resolution of the characteristic equation associat

ed with the auto-regressive model and of a system of Van der Monde 

linear equations. 

3.6 - The Phase Resonance Method 

This identification procedure [1,2) is also a "normal mode testing" 

technique, but it is based on different assumption on the matrices 

characterizing the system <stiffness, mass and dampingl, in order 

to obtain a linerized form of the response operators. In partic

ular, it is assumed that the damping matrix is proportional to the 

mass and stiffness matrices (proportional dampingl. The mode shapes 
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are identified through a finite-difference approach on adjacent 

spectral lines of the response operator. 

This method usually gives reasonably good results when overlapping 

between the modes is limited <low modes density). When the overlap-

ping is likely to cause significant errors, an iterative 

least-square based estimation method, which tends to minimize a 

suitable error function, can successfully be applied. A particular 

version of this approach has been developed by Hewlett-Packard [ol. 

lt uses the following linearized system response Cvector) in the 

frpquency domain : 

"' r" r; 
H(s)=-"[ + . • 

a;. 1 2/(S- Pt.) 2J(S- Pa:) 
( 12) 

where : 

s = •a • jw = Laplace variable; 

r"- Complex residue of mode shape 

(.); = Complex conjugate of (.) ... 

The iterative algorithm uses a least-square estimation method, 

based on the minimization of the following error terms : 
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N 

g. L(H.H(w.}) 2 ( J 3) 
••• 

where : 

He• measured system response vector at frequency i ; 

H(wol'" analytical system response vector at frequency 

N• number of spectral lines of the response vector • 

For each iteration of the algorithm, all modal parameters lfrequen-

cy, damping and mode shapesl are newly estimated, in such a manner 

that gradually the error between the measured response operator and 

the calculated one, can be reduced. 

3.7 - The Maximum Entropv Method 

This method seems to be promising analysis technique for ship vi-

bration measurements. Jt is based on an extension of the auto-cor-

relation function, which gives the required frequency resolution 

[4]. Statistics on the reliability of the estimation of modal pa-

rameters are also possible. 



www.manaraa.com

System Identification in Naval Engineering 

3.8 - Clrcle-Fitting Parameter Estimation 

The circle-fitting method [27,281 was originally developed by 

Kennedy and Panru for ~ystem with hy~terptic damping. It is also 

valid for system w1th g~neral viscou5 damping, and further e~ten

S!Ons also allow the estimatton of complex modal disolacements, 

yield1ng complex mode shapes. In practice, the method works as 

follows : 

the numbe•· of mod{.•s i~ estimated by visual inspection of the set 

of respons~ curve 

- the damped natural frequenc1es are deftned at the local maxima 

of the response curves 

- u~ing a least square approximation method, a circle is fitted 

through points in the v1cinity of the damped natural frequency ; 

- the damptng ratio and the modal displacement are defined in 

amplitude and phase by the position and dimension <diameterl of 

the circle • 

3.9 - Analytir.al Identification Procedure 

The System ldentification Procedure was described in [12). A 3-D 

Finite Element Model of the hull and superstructures was correlated 

469 
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with the response measured with an exciter test. The calculated 

responses at the main resonant frequenc1es were modified to obtain 

the best possible selection of dampinq values. In essence, the 

dampinq determined in this way is not a "true" but an "equivalent" 

damping, which is to some extent a function of the analytical model 

and possibly of the condensatton technique used • 

It must be remembered that the analytical model, no matter how 

detailed, represents the total dynamte behav1our only to a l1m1ted 

extent • Nevertheless, the derived re~ults were in qood ~greement 

with normally accepted damping values for hull and superstructure • 

4- Camping ldentificati_c;m Liter~tur~ 

Up to now very few recent Iiterature concerning ddmping identifica

tion is available • The follow1ng presents a review of 1dentif1ed 

damptng value with, whenever possible, indication of the identifi

cation procedure used • 

The Germanisch Lloyd performed extensive testing on ships of vary

ing sizes and with different loading condit1on [161 • Responses to 

both propeller and exciter are measured, and the modal parameters 

<frequency and dampingl are identified • 

The damping coefficients for hull and superstructures are identi-
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fied both by "response curve" and "phase variation" methods • 

The hull damp1ng 1dentified by the response curve method from pro-

peller excited vibrations, presents the following features : 

- for vertical vibration, damping values decrease as the frequency 

increases. An example of identified damp1ng pattern is shown in 

Fig. 2, where values are obtained from different measured points 

on different ships : the damping values show a sharp drop at the 

first vibration modes. 

t2. 

8. . . . • 
• fl . ~ . . 

J# .... ... 
0. 2. .. 6 -fO. 12 14 f(Hz) 

Figure 2- Damping in different points for several ships ([16]) • 
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- The damping does not depend only on the mode at the current 

frequency : coupled modes leads to higher damping values. 

Table 1 shows hull damp1ng values for various types of ships calcu-

lated by the response curve method applied to propeller excited 

vibrations • Damp1ng values for the first hull modes seem to be too 

high • Results from exciter tests performed at quay show damping 

values relatively high in the 7- 12Hz range . The results of 

these tests, carried out with a main interest 1n superstrutture 

vibration, are mainly analysed using the phase variation method. 

!"F;::.,..;:;;:;:.;.;-;~ :=:.;=:-.:::::::::::;:::.·:=-=:.~::-_' :.::.:= -=:;::. -=:::.~--=- ·::: ==---=':~:". ~:.:...._.·:.~== :~!!!."'.::."::!!.~ ~~t 

!lTable 1 - HULL DAMPING VALUES < U6J > ·II 
i......:::-.=·.;:::;::;::.;.=:=::.=:::=::~·~·=::=.=.:::.=:=:::::=~:p.:::.:::::::..=~::::::::;:.-..=;.:;:::,;.._-:..:_;;;;::;.;;;;;Ji 

!! Ship type ! Frequency t Critical l-
1
= 

11 1 Range i Damp i ng 'l. !. :! ----· --- ---· --·-------,----------- --- ----r------------··--·- -·-- ·--,: 
fi LPG Tanker t 0.91-10.SOI 9.1-2.0 I 
:~--- ·---· . -·- ·-··- .. -------- _____________ .! _________ : ____ ---- --·. ···---·- --·· 11 
11 LPG Tanker _ 0.91-4.02 1 7.6-2.6 1'1 

Ii ·--p-; od~-;;--1 ---------------r-- ·--· ------ ----· ----- -1: 
l! Carrier j 1. 07-7,781 9,4-1.5 !1 
~~--- - ---- ·----------------t----·. ------- --------r ---- ----- ------------ --·;, 
II RO-RO p .P-18.40 : 13.9-1.8 ii 
ir--- --.. ·--- --· --~ .. r-·- ----·--·-··-.. ---· -··-t -·- ··--··· ----·---·--- --~---,.-- i! 

ll------~-~-~~~- -P--:..~?:~~:_~~ L------1~.:..~ -~-~-? _____ Jl 
!! RD-RD I 1. 07-21.30 I 14 . 2- 0.9 II 
,, ...... -·-· ------ -----~----------· ·-·--· ---------t-·----· ·------- ....... -----. ----- II 
!I Containerl 1.14-10.55 1 9.1-1.1 11 
Li::-::: · ~-- "'"'"-=·:=. :::::·:-::::. c=:=.:=c-::,-,,.,-::=:·,.=~-=::=-,:=~-,=:-=::~.·· .. o:·---;,::::·::cl 

Another set of damping values is identified in (5] . Various ships 

at sea and at quay were tested • Mostly exciter tests are performed 

at quay, and the vibration response obtained is analysed using the 

response curve method • The response of ships at sea was analysed 
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mainly with the logarithm1c decrement method • 

Table 2 shows some of the hull damping values reported in the 

paper. Values marked with an asterisk were obtained using the re-

sponse curve method • 

0•, • • ""-~ ..... - , •. -·o.c .. ·c:ccoco=-"·'=-' '-''·-'·"'· :::.-::..""·=.:::-: •:::-:. "'" ""::::::":--::. .. ::-: . .:-·:";:=...'j1 

~~ ~ Table 2 - HULL OAMPING VALUE < (5J > !! 
[-~-= ·-~-- ·• """'':."' """-='=--=~=-"-=, .. "..,.,"1'."=--=:o=~= '=== :o~::::::::l.!=::::::::il 
< Ship I Frequency j Critical ! Notes i. 
:~ _ :~=- ~-- _R_:~~e- ---~--~~m?_~ ~~:J ______ ... ... :\ 
" I I I II :! Tanker , 3.8 - 13.3 0.9 - 1.9 1 - ji 

:;- ~ ~;k~r : ~-~8 - - ·1-~ ~;r~~ -1 - -~ .-5; ---- -~ -- - ~; 
, , . . .... ~ ... -·· .... .. ... L ...... -- . .... . . ...... ----~---.----··-.......... ..!! 
: I ' I I' 
1 Tanker l 5 . 0- 11.5 1 0.7 - 1.3 iFull load . 
j; -- .... -·····~·-c-···- --~ ·--·- ... - .. - .. ·~ . - .. t~ ...... -..... ··- ... -.... ··-·-. ·;- -H· .. -·- ··-·····-··-·-!' 
:• Tanker 1 5.3 - 12.8 ' 0.8- 2.9 1

1 
Ballast l! 

r I . . . II :r· T~n~er ··; .'~~; .. ~--- ~-;~~ j~ .. ~~ --- ~-.4sr~-.~~.-~-: -Ii 
i ~-- ....... - ... .. ·+ ..... - ............... ----·l··--.. ---·-.. -· ---t----·- _ ..... .:...,, 
!! Tanker !7.0 - 12.3 ' 1.0- !.9 : - :: ::- . . ~ ..... ------ . + ............. ------, .. --· - ---·-t: 
~l L . N. G. 1 4. 5 - 6. 7 ! 1 • 46 - I . 7 ! - h 

\l~~:.~ .. :~~~·J_~-~~--=~~l ·5~?TT:~-~§~~~~~ -~I==::,~:::~--,~-~ 

Reference (14) presents a survey of damping values for various 

ship~ in different loading conditions The logarithmic decrement 

method is used in the identif1cation Some of the results are 

shown in Table 3 • 
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f
--,:==~=====·===='"'::.:"~····-·- . ---··-~~="":::.==~=~~:.:::::.::·~ r= Table 3- HULL DAMPING VALUES ([14Jl J 
,r,~=--~~7;--· .. r~~~~=;~~:~:~r-~~~-i~:~ -r ~;~:;·:~~=1·:·=-
li····c~-~::~~-~~~ L.P·~·r-~--L·~~~ -~--n,~m~~;-~--~t-·· ~--~·~·;··-· .... , 
lt·-· -···--···-----·--- ---····--·-- ----· ~---·-··-·--·--··-·- ···----··-· -··-··· --···· .,, 

'' Cargd ship) Part Load! 1.0 [20] 1 
1!--· ···-···--·-·· -----~-t-··-·-··· ·--··--····· -··-·--·---~ -·-···-··· ····· ·-··---····· --··+ ···- ·-- · ········· · · ·I· 
I Cargo sh1p 1 Full Load 1.13 ! [20] ~~ 

Ir-· .. -·--· --·--···· ·- -----r-··--····-···· -······· --··-- ----··-·· -·-· ·-·. . ... t .. -. -·······- ... ....... . .... : 
·1 Cargo ship I Light 0.38 · [22J !I 
1~--·····-··-------·..1 ·----- ·--··---·-- ,--· -·-········ --·· ·-·~·········-··-·· ...... - ·-····...11 
I! Cargo ship I Deep j 0.41 I [22] :1 
lr~~;·~~----~~~~t---~~~~·;·-- ··-r· ··--··· ---~~-;--·--···-·-r-···· ··-··· [ ~-~]···-· ····1: 
lf· -·-······---·---··---··-l--·-····· ...... ··-·-···-·~-----··-··· .. --·-·· - -·- i ··-··- -· -· ............ ,, 

Ii Cargo ship I Deep I 1.8 i [23] li 
f ----··- -- ----·-- ..•. ·- +--·····-·--·---·- ·----+· .... -·- -·---· ·-· ·- .. ·-+·.- --- ······- ... ···-·-- .. ··-1: 

II Container I Normal I 0.7 ! [21] •1•: ,: ! Dr aft 1 I I 

r~;;~~~;~·---r~;~~--~;~;~·r----·--;·-~-~---- · r ----[-~;·;-· -·,t 
[=:.:~:~===--=".:::=-:::!::.-..: . .:-.::::=:....::::.:::::··:..:. .... -"'":::..·'·"'·'"''="-= '·'· .:..:="·'·:~.-·- :::····-·- : .. :.:. ·.A; 

An extensive description of the identification procedures applied 

to four ships is described in [6] • Due to the part1cular configu-

ration of one of the ships (twin-skegl, tests with impulsive exci-

tation due to stern-wave impact were performed in addition to the 

usual steady-state exciter tests 

The paper discusses the respective advantages and drawbacks of both 

types of excitation, and their consequences on the damping 

evaluation • Four identification methods are discussed : 
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- the Phase Separation Method <PSMl 

- the Exponential Method <EMl 

- the Phase Resonance Method <PRMl 

- the Response Curve Method <RCMl • 

The basic concepts are reviewed for each method. Two applications 

are given which consist of simulating experimental vibration tests 

with the results of a theoretical model obtained by structural 

analysis Two other examples are quoted, concerning the totalling 

four ships 

% 
C/Ccr I 

6 PHASE SEPARATION METHOO J__ ____ •EXPONENTIAL METHOO 
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Figure 3 - Damping Identified by Different Analysis Methods for a 
Car Ferry <from [6ll 
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Figure 4 - Variation of Damping along the Ship for Different Vibra
tion Modes lfrom [6J> 

For each case, the applicability of each method is discussed and 

the main results are shown . Various aspects are invest1gated, such 

as : 

behaviour of the methods at various modes <Fig. 3>; 

- damping pattern for individual modes along the ships from 

measurements taken at various locations <Fig. 4l 

The main conclusion are 
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- the natural frequencies are identified with good accuracy by all 

methods; 

- the mode shapes are identified with less, although acceptable 

accuracy; 

the damping identification is good in the simulation models, no 

matter which method is used . On the other hand, notable de-

crease in accuracy takes place for the experimental models; 

- the damping values increase slightly with the frequency; 

- coupling between hull and subsystems leads to higher damping 

values. 

3 

I Nltl -.l DI 

c;ee.r 

... ru.n suA&AnOM, s. u 

[] • IIPOIIIIDtTlAL, S, U 

2 Q I~'UTUJ., 11, ll 

[] WPICifSI tvlVI • S, U 

• •sf'OII.s& CUIW , 11, U 

l ~il~ 
0 WPCIIII CllYI. , t!, &\ 

:::; 
liCtTATIOI 

lt 
p [1: .. ::: j 

,•' SlUDY• ITAfl • 
t ='? 

t,.PUUtYI II 

L 

' 

: : : ... U\.tlft II 
: : t =" ::-;:«:::: . :: IISOLUTlOW 

· ·=::·:·· 0 .0:1 ... " O.t .. u 
0.1 .. ., 

0 

, I 2 I , I • 5 I I I 7 H1 I 

2n 3n 4n Sn ln 7n mode 

Figure 5 - Damping Identification from Impulsive and Exciter Tests 
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In Fig. 5, the damping pattern shows two peaks which correspond to 

coupled hull - double bottom modes. 

Results of damping identification obtained by an analytical proce-

dure described in [12,17) are shown in Fig. 6 and in Table 4 

-
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Figure 6- Damping <from [12J,C17Jl 

For LNG carriers, distinction 1s made between maJor and minor 

modes • All the damping values are between 0.4 and 2 1. of critical 

for the major modes • Minor modes show higher values characterized 

by a more regular pattern • 
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'! L.NG I 7.0- 10.9 )0 .39- 1.90 f H1. Modes il 
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ii Cr uise 13 . 20-5.75 1 0.4- .1.1 I Ist Fr.Rg ll 
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DETERMINATION OF FREQUENCY RESPONSES 
BY MEANS OF PSEUDORANDOM SIGNALS 

A. LIDaeaer 
Unlvenity of TechDoloiJ Otto voa Guerlcke, Maadebura, G.D.R. 

Syste• identification de•ands in each case a suitable excitation. 

Independent of the application of one of the nu•erous syste• indentifica

tion •ethods so •uch 11echanical energy has to be fed into the syste• 1 

that an evaluable reaction of the syste• under investi9ation occurs. The 
at• of identification is to provide an experi•entally secured •odel 
describing the dyna•ic behaviour. 

The usefulness of advan1:ed •ethods is essentially based on the applica
tion of wide-band exciting signals in connection with direct co•puter 
coupling. 

The •ethods in freq~ency do•ain which have proved a success start 

fro• an experi•ental dt~ter•ination of the ele•ents of the frequency 
response •atrix. 

The frequency response• are either used for direct assess•ent of the 

dyna•ic behaviour or are taken as funda•entals for further investi9ations 

for exa•ple •odal analysis. 
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2. REQUIRE"ENTS OF EXCITING SIGNALS 

"echanical structures are excited by: 

periodic signals Csinusoidal excitationl 

transient signals Cchirp, i•pact, stepl 

rando• signals (natural rando•, periodic 

pseudorando•l. 

Fig.l shoM& the different kinds of exci-

corresponding 

spectra. Each kind of excitation has its 
l '2 

specific advantages and disadvantages. 

Nith regard to a Mide-band excitation 

Mhich should be as Mide as possible ran

do• excitations are •ost suitable. Also 

because of the linearity of the syste•, 

•hich has alMays to be assu•ed, a ran

do• excitation is to be preferred to 

i•pact and step, as s•aller displace•ents 

are introduced into the syste•. An essen

tial advantage is that nonlinear distur

bances •ay be abolished by averaging. lf 

required, by reasons of higher accuracy 

to excite a syste• reproducibly in a 

signal 

xUl~ve 

T t 

A. Lingener 

power spectrum 

Gtf)~ 

.1 f 
T 

1 ~~~ .. " ---l:::.:heor. ~ 

"u;o~ 
t 

~ 
L 
~ 
~: 

f 

Fig.l. Different types of 
exciting signals and 
their poMer spectra 

defined frequency range, then there exists nearly no other possibility 

of excitation than by artificially generated pseudorando• signals. 

3. GENERATION OF PSEUDORANDO" SIGNALS 

For the generation of pseudorando•s with defined qualities so•e older 
. 3,4 

•ethods are known, working without Fourier-transfor•ation • 

"ethods based on FFT - algorith•s, hoNever are to be preferred, as they 

can use the FFT-algorith•• neccessary for signal- and syste• analysis 

anyMay. Periodic pseudorando• signals •ay be generated according to the 

folloMing principle. 
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The outset is • discrete spectru• UCkl consisting of N co•plex ••pli

tudes. The absolute values U of this spectru• •re given point by point 
k 

and the phase angles are added in the for• of independent r•ndo• nu•bers 

e qu i p art i t i on ed in 10,27r/. The transforution of this spectru• Ctoge-

ther with its conjugated co•plexl into the ti•e do•ain by FFT-routines 

yields 2N real values of one sa•ple function of the r•ndo• sign•l. The 

principle of this •ethod is shown in fig. 2. 

tJ{ 

k=O N 

T • 2N tJf 

1 f tJ•-&.!1.... 
T 2N 

Fig.2. Generation of periodic rando• signals 

Ne c•n see, th•t after fixing the sa•pling frequency of the sign•l to 

be generated the distance 4f of the spectr•l lines depends on the length 

N of the origin•l spectru•. A higher resolution in frequency do••ln is 

possible only by increasing the nu•ber N of •••ples in the original 

spectru•. For different re•sons, such as core stor•ge c•pacity, •ccur•cy 

of calculations, resolution capability of ADC or DAC, respectively, the 

length N is not exp•ndable to any nu•ber. Usual •ini- and •icroco•puters 

process a nu•ber of N a 1024 values. Consequently, the possible resolu

tion Af of the generated pseudorando• signals is li•ited by 

Mith f • 0,5 f 
N s 

f = f /1024 
N 

the Nyquist-frequency. 

The ti•e function generated in this way is periodic•l with 

T • 2N 4t. 
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The calculations on a computer use a storage saving algorithm, which 
calculates a complex sequence of values. The real and imaginary parts of 

5 
this sequence form the real sequence required • 

4. EXPERIMENTAL DETERMINATION OF FREQUENCV RESPONSES 

The discrete values a(nl of the time function a(tl, gained by inverse 

Fourier-transformation from a predetermined spectrum, are read out with a 

fixed sampling frequency. Via a DAC they control an exciter, which itself 

excites the mechanical system (fig. 31. Exciting force and system respon

se are measured and read in the computer again via ADC. The computer 

calculates auto- and cross power spectra, frequency responses and coher

ence functions.Because of periodicity of the pseudorandoms leakage eff

ects do not appear in spectral analysis. Averages of spectra, gained by 

different pseudorandom signals with different phase angles but the same 

amplitudes, are used for weakly disturbed systems only for the determina

tion of the coherence function. 

H (f) 

2 
fxy 

i 
I 

t 

L __ 

a 

• 

h 
G." 
I G11:tl 1 

~.- (;yy 

FFT 

random 
numbers 

spectra 

-& 

Vibration pick up 
/ 

mechanical 
System 

Fig.3. Measurement setup for determining mechanical frequency responses 
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S. "EASURE"ENTS OF FREQUENCY RESPONSES BY "EANS OF PERIODIC 
NARROW-BAND-PSEUDORANDO" 

487 

The procedure described so far produces exciting signals •ith a 

frequency resolution~f • f 12N. Ho•ever, in •any cases, after a basic 
s 

•easure•ent a higher resolution is neccessary Cfor instance if narro• 

neighbouring eigenfrequencies occuri.A co•pression of the band•idth •ith

out increasing transfor•ation length no• is possible by the inversion of 
6 

the co••on Zoo•-transfor•ation. 

The basic principle consists in •hat folloM&& The •hole range of the 

spectrue is divided into a nu•ber of blocks of N spectral lines each. 

After this, one block representing the frequency range of interest is 

zoo•ed in the ti•e do•ain. 

In this May, pariadie narro•-band pseudorando• signals •ay be gene-

rated •ith a band•idth of flf = f 12 N 
s 

supposed, that only this one block 

As a restriction it has to )e 

contains spectral lines. The basic 

idea of this •ethod is, si•ilary as in zoo•-FFT a shifting of the 

frequency range of interest into the origin of frequency axis and the 
7 

application of the inverse FFT. After syste• excitation and •easure•ents 

the sa•pled ti•e signal has to be Fourier-transfor•ed again into fre-

quency do•ain. 
S,7 

The principal steps avoiding co•plicated for•ulae Csee appendixl 
are sha•n in fig.4 far the case af real Zaa•-FFT. Predeter•ined are 

Nl2 • Sl2 absolute values of an a•plitude spectru• ,fig.4C11 in the 

frequency range 

A pseudorando• 

lf , f I •ith a frequency bandMidth of Af • Cf -f IIN. 
I 2 2 1 

signal and the a•plitude spectru• of the response of a 

syste•, excited by this signal are to be deter•ined. 

Before applying the FFT - algorith• p subspectra i in 10 1 f -f I are 
i 1 2 

calculated fro• the predeter•ined spectru• co•pleted by co•bination •ith 

rando• phase angles R ,k • 0, •••• ,511 and their conjugate co•plex 

values repeated periodic~fly, fig.4C21 and transfor•ations of 1024 co•-

plex 
7 

spectral lines each according to the rules of inverse Zoo•-FFT 

into the ti•e do•ain are carried out. Anather direction af the inclined 

straight line represents the corresponding conJugate co•plex spectru•. 

p is supposed ta be a po•er of 2. The~discrete the signah i 1 generated 
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f • 
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(1) 

til, t~ fit, t; 
' FFT"' ~-times(inverse loom) ' 

T 
.e. arran9ing 1 tn) from ii 

~~:~.t 
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f 

A. Lingener 
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bandwidth Af • 11ßT 
wonted sompling frequent y 
fs 
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f1' •llft-f1 l • fsiB 
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of lenglh T, ß N somples , 
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' extitation of the system and measurement of response in the 
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' resClmpling 
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"~·L 
'· f:t f 
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.a. shifting of response spectrum 
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·~ f L---------------~ 
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bne of ß po.rtial spectral 

Fig. 4. Signal flo• during •easure•ent of freguency responses by •••ns 
of periodic narro•band pseudorando• •ignals 
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in this Nay are sa•pled Nith a frequency f 1 ~ 2(f -f I and their lenghth 
Ii 2 1 

isT= 2Nif each fig.4131. 
5 

These /) tiu series i 
i 

are fitted into each other and one ti•e function 

of length T with ~N sa•ple& 

an increase of the sampling 

is arranged. 

frequency to 

This procedure corresponds to 

f = pf 1 
1 in f i g. 4 ( 4 I shown 

s s 
for p = 4. 

After DC-conversion the systea is excited by this signal and the 

response is measured as indicated in fig.3. The response signal invol-

ves only frequencies in the range lf 1 f 1. 
l 2 

Its spectrua would take the 

fora as shown in fig.41Sl. 

To find out this spectrum a •odified zoo• transforaation is now applied. 

After 

to f 
5 

order 

AD-conversion at first the sa•pling frequency is diaished fro• 

again by oaitting ~- l of p successive values (resaaplingl. 

to apply FFT at the saae tiae the discrete tiae signal has to 

f 
5 

In 

be 

shi fted again to the frequency range 10, 

fig.41ol. But as ~ and N are 

f -f I by •ulti~lying with 
2 1 

expl-27tH tl, 
l 

both poNers of 2 1 applies 

expl-2lt jf tl ~ 1 and aultiplication is 
l 

The resaapled discrete tiae function 

not neccessary. 

is now Fourier-transfor•ed lonly 

one transformationl and as result we find the desired spectrua of the 

systea response in the frequency range lf ,f lwith a bandwidth of Af 
l 2 

fig.4171. Nithout the procedure described here we Nould have to have 

used generally a saapling frequency 

trua Ni th the bandNidth f /N » A f. 
2 

2f and would have obtained a spec-
2 

o, INFLUENCE OF AD-CONVERSION 

In applications of si•ulated pseudorandoa signals to test rigs 

an analog signal, which aay 
N-1 

8 
be represented by a staircase curve 

with 

)( ( t) = Lxlnlt1t blt-n6tl 
... o 

{ 11 (j. t f or - 6 t 12 ~ t ~ At /2 
b (t) = 

0 otherwise 

is for•ed by DAC, using a discrete signal 
... - f 

x (t) "'Ät .L_xlnl dlt-nßt>. 
d ti•O 
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As xltl •ay be thought of as convolution 

x(t) "'X (t). b (t) =rx (~) b (t-'t')d"t 
d .... d 

the amplitude spectral density of xltl follows because of the 

convolution theore• as 

Xlf) = x (f) Blfl 

Here X lfl is 
d 
fs 

Blfl= --
7Cf 

d 
the predeter•ined a•plitude spectral density and 

7rf 
sin -

f 
s 

the a•plitude spectru• of reetangular pulse. 

V lf l 
d 

the cross power spectra both a•plitude spectra X lfl 
d 

are •ultiplied with the factor Blfl so that for the spectra, 

for deter•ination of frequency 
• 6 (f) " 6 (f) B I f l 

llyd 

responses applies 
2 

6 lfliBifll 
xyd 

BI f l = 

2 
The function IBifl I is presented in f i g 5. 

t 

lO 35 
f[H'l) -

and 

used 

Fig.5. Influence of digital-analog 
conversion 

Fig.6. Result of spectral analysis 
of a si•ulated narrow band 
noise 

In order to co•pensate for this influence the predeter•ined power 

spectral density of the signal to be si•ulated is •ultiplied before 
-2 

applying FFT with IBifll 

The si•ulated signal in the frequency range above the Nyquist frequ

ency contains periodic shares caused by discretisation as well as shares 

caused by the staircase curve. These shares have to be abolished by low 

pass filtering. By reasons of the non ideal filter characteristics the 

application of a higher Nyquist frequency than is neccessary is reco••

ended. 6ood experiences were •ade with a Nyquist frequency wich is double 
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the size as neccessary. In 
such a case the filter charac

teristics between f /2 and 
N 

3f /2 excerts no influence on 
N 

the result. In fig. 6 is shown 

100 

•' 

the measured spectrum G lfl of f 10 

narrow-band 
II G,. 

noise with a con-

stant spectrum Slfl in the 

frequency range /28.5 - 31.5 

Hz/ generated according to 

this principle after 50 aver

ages lwithout synchronaus sa•

plingl. 

The quantitative influence 

of the correction factor 

be recognised fro• fig. 

can 
7 in G,. 

which the result of a Simula

tion of a predeter•ined spec

tru• with several peaks was 

analysed with and without cor

rection factor. Applying pseu

dorando• signals for the de-

v' 

, __ 

22 2H 
f--

491 

1go.enpsd 

. 2 rts .. lt 
· wothout 

corrtctoon 

2 lwoth 
corrtcbon) 

50.1 Hz G2 5 

Fig.7. Power densitity spectru• Nith 
several peaks •ithout and with 
correction 150 averagesl 

ter•ination of frequency responses indeed does not de•and any correction, 

as input and output signals are falsified in the sa•e way. 

7. TECHNOLOSICAL IftPLEftENTATION 

In practical applications of this •ethod the exciting signals are 

generated in advance to the •easure•ent and lif possiblel stored on a 

data disk. In all cases several independent signal sections are genera

ted. In the case of field •easure•ents, if no suitable co•puter is avail

able, the pseudorando• signals have to be stored in advance on a data 

recording •ediu• or generated by •eans of a special signal generator 

directly in the field. In the sa•e Nay, the •easured signals of exciting 
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forces and syste• responses have to be stored too. 
After data processing the frequency response •ay be displayed in any 

suitable for• or used for further processing. 

8.1. Resolution of a frequency response with a quarter of the bandwidth 

A frequency response of a mechanical syste• according to fig. 8 was 

•easured by •eans of a pseudorando• excitation in a frequency range fro• 

10 to 1024 Hz with a bandwidth of f = 2 Hz. The fig. shows the corre

sponding Nyquist plot. With the ai• of an i•proved resolution of the 

frequency range 512 - 763 Hz a pseudorando• signal was generated accor

ding to the •ethod described in paragraph 5 and the syste• was excited 

again. 

Fig. 9 shows the resulting cut out of the Nyquist plot with a frequency 

resolution of 0,5 Hz. 

In both cases were carried out 4 averages. The ti•e for •easure•ent 

was for the basic range 10- 1024Hz, 4 sec 11 sec for each particular 

With the zoo• - factor ß = 4 the •easuring ti•e increases signall. 

to the fourfold. The calculation of the Nyquist plot in fig. 8 takes 

20 sec. with 4 averages. 

Jm 

Fig.S.Frequency response 10-1024 Hz 
bandwidth 2 Hz 

Jm 

Fig.9.Freqency response 512-768 Hz 
bandwidth 0.5 Hz 
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8.2. Rando• fatigue tests Nith si•ulated operational Ioads 

To carry out fatigue tests the predeter•ination of operational Ioads 

is neccessary. For this ai•, often •easured Ioads or their spectra are 

taken as a basis. The method of si•ulation of pseudorando• signals de

scribed here allaNs a real time si•ulation of predeter•ined spectra. A 

specially prepared microco•puter calculates single independent sections 

of periodic pseudorando•s. These signals control via DAC an electric 

servohydraulic device. 

Nhile one section is put out, the co•puter is internally calculating the 

next section as a digital signal etc. Such kind of application Nas elabo

rated for a tractor factory. The upper li•iting frequency in this appli

cation Nas 128 Hz. 
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10. APPENDIX 

10.1. Zooa-FFT 

Zoo•-FFT transfor•s a real ti•es series of ~N sa•ples by aeans of 

P coa11or1 FFT 

saaples 

The expected 

<N saaplesl. Predeter•ined isareal time series of 

z ( n I = [ z ( 0 I 1 z ( 11 1 ••• 1 z ( N-11 l. 

spectru11 < pN 

~-1 

sa•ples, conjugated co•plexl is 

N 

-~ L 
PN n=O 

Z ( k I = 
k2 '11"" 

z ( n I ex p ( - j k=O,l, ••• ,pN-1 

Z!kl aay be foraally Nritten as 

f 1 -
Z<kl .. (3 z1 

i=O 

( k I 

Nith subspectra 

N-1 

-z ( k I =-
N 
L z1 (nl 
naO 

k2'iti 
exp ( -j --I 

fiN 

k2JI'TI 
exp ( -j --I 

N ' 

calculated fro• subseries <N saaplesl 

k=0,1, ••• ,N-1 ( 11 

z (nl = ( z(il, z(i+f1 1 z(i+2p1, ... , z(i+!N-11~11 i =0 ' 1 ' ••• '~- 1 

z !kl are periodically Nith k=N, i.e. Z !kl uy be calculated by co .. on 
i i 

FFT <N saaplesl. For the p-th partial spectrua Z<pN+rl p=0 1 1, ••• , ~-1 

yields: 

Z = Z <pN+rl 
p 

~ 
= L exp 

i=O 

r2Jti 

p2~i 
(-j -p-

Nith ~ !rl = exp < -j 
i N 

I • 

Putting 
T 

Z<rl .. [ z ' z ' I I I I z J 
0 1 ~-1 

Z!rl z 'i f 
T .. [ 

o' 1 ' ••• ' 
] 

~-1 

Z (rl cA. (rl 
p=O, 1, ... ,(Tl 

(21 
r=O, 1, ... ,N-1 

vector of partial spectra 

vector of subspectra 
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we 

A < r I r:: [ ~. ··d 
K<rl = [ exp -j 

2':tir 
{!J 
I 

) ] 

diagonal aatrix of c<. (r), i=0,1, ••• , p-1 
1 

f' ~ -utrix of co•plex uni t vectors 

i, r = 0,1, ••• ,~-1 

can Nrite (2) in utrix presentation 

p Z (r) = K(r) A<rl Z (r) • (3) 

For K and A yield: 

-1 
K 

-1 * 
A = A • (4) 

FFT allows processing of co•plex data. For this reason fro• a real 

ti•e series u , u , ••. , u with 2~N sa•ples a co•plex ti•e series is 
0 1 2~N-1 I 

arranged.sa•ples with even hu•bers beco•e real parts x<nl, nr::0,1 ••• ,~N-1, 

samples with odd nu•bers become imaginary parts y(n), n•0,1, ••• , ~N-1: 

z(n) r:: x(n) + j y<nl. 

The for•ulae of real Zoo•-FFT are valid and lead to a spectru• 

Z(k)r:: X<kl + j Y<kl. The spectru• U<kl of the real ti•e series consists 

of p partial spectra and results fro• the partial spectra of Z<kl as 

follows: 

* 4 U <pN + rl = Z <pN + rl + Z <pN - pN - rl 

- j [ Z ( pN + r * ) - z <pN + rbr 
( & N - p N - r I l ex p (- j ----

1 fi'N 

r =0, 1 , ••• , N-1 p =0' 1 ' ••• ' ~ -1 (5) 

< pN+r hr 
The hctor exp - j ~N I 

the odd sa•ples u by ~t. 
2k+1 

corrects the shifting in ti•e do•ain of 

10. 3, Inverse Zoo•-FFT 

Starting fro• fN co•plex spectral lines U(kl, ka0,1, ••• , pN-1 

inverse Zoo•-FFT yields 2~N real ti•e sa•ples u(nl, n•O,l, ••• , 2fN-1 by 

the following steps: 

~. Calculation of PN co•plex spectral lines Z<kl in p blocks of partial 

spectra of the co•plex ti•e series z(n) according to the reversal 



www.manaraa.com

496 A. Lingener 

for•ula of !51 1 

* Z !pN + r I = U !pN + r I + U <pN - pN - r I 

* + j [ U ( pN + r I - U 
!pN + rbr 

<rN - p N - r I l ex p < + j 

r=0 1 1 1 ... 1 N-1 
p=0,1, ••• , f-1 

2. Calculation of p co11plex subspectra Z (rl according to the reversal 

for11ula of (31 and with (41 

* * Z <rl "' A (rl K <rl Z (r) r=O, 1 1 ••• ,N-1 

.. * f_ z. (rl =o<. <rl Z !pN+rl 
p21fi 

exp (+ T 1, r=0,1, ... ,N-1 
1 1 

p=O 
-1 

3. FFT ( f -tiusl of (1) yieldll r COIIplex subseries zi (n): 

N-1 
) n2xr 

z i (nl • "';::o Zi (rl exp (+ j -N- I 
n=O, 1, ••• ,N-1 

i=O, 1 I ••• ,p-1 

4. Arranging the COIIplex t i lle series z !nl 1 n=O, 1 1 ••• 1 N-1 

z (0) 1 z (0) I • • • I z (01' z ( 11 1 z ( 11 I • • • I 

0 1 -1 0 1 

z ( 2) I • • • ... ' z <N-21 I z (N-11 I • • • I 
0 -1 0 

5. Arranging the real ti•e series u(nl 1 n=O,l, ••• , 

10.4. Simplification of Inverse Zoo•-FFT in the case 

of narrowband pseudorando• 

z 
-1 

z 
-1 

!N-1 I 

( 11 I 

(61 

In the case of narrowband pseudorando• is U = U !kl + 0 only in the 
k 

p-th of the p frequency intervals (fig. 101. 

Introducing new indices r an~ • and separating real and i•aginary parts 

in !61 resul t 

Z <rl = U <cos~- sin~ I+ U <cos1 + sin~ I 
r 1 2 • 3 4 

+ j [ U (sin lj + c:os ~ I + U (sin 'J - c:os 'i I l 
r 1 2 11 3 4 
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U(k) Ulm) 

N 2N 3N 

~------ m 
N-r --t 

pN + r ===+ r 
pN+N-r ~m 

4N n 

Fig.10. Spectru• of narro•band pseudorando• and nu indices (p:o:2, f•41 

Z (IDI = U (cos ~ + sin 'i I + U (cos 'i - sin 'i I 
r 1 2 • 3 4 

+ j ( U (-sin' + cos 'i I + U (-sin ~ - cos '1 I) 
r 1 2 • 3 4 

•ith 

= 

497 

'! = 
l 

['pN+<I2l ' 

2~ 
•,] ·: 'i3 

r·p-p1N-ol2l - R0 t• 

2p N r=l ,2, ••• ,N/2 

[''""'121•••··,]~ 
••N-r 

'J 
• r~-piN-oll2i <oi-R 0 lo 

i=O, 1, ••• ,p-1 
2p N 4 2p N 

If ß i s a power of 2, then 'J , ••• , 'j .ay be cal cuhted •i thout r 1 4 
•ultiplications only by additions and shifting of dual nu•bers and the 

-1 
calculation ti•e essentially only depends on the ti•e for 'P +11 FFT 
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APPLICATION OF MODAL ANALYSIS TO LINEAR ELASTIC 
MECHANICAL SYSTEMS BY THE EXAMPLE OF A RIBBED PLATE 

A. Lingener 
Univenity of Tecbnology Otto von Guericke, Magdeburg, GOR 

1. SHORT DESCRIPTION OF THE "ETHOD APPLIED 

The •ethod of •odal analysis used here assu•es the structure under 

investigation to be treated as a discrete linear nonproportionally vis-

cously da•ped syste• with n degrees of freedo• 
1,2 

matrices. 

and syuetric systu 

The dyna11ic behaviour of such a syste• is described by a linear ti•• 

-invariant system of differential equations 

" y Ctl + D y Ctl + C y <tl = f Ctl (1) 

with 

" - •ass matrix <n x nl 

D - da•ping •atrix 

C - stiffness •atrix 

y<tl - colu•• vector of n independent c~ordinates of the syste• 

fCtl - colu•• vector of exciting forces acting at the n •asses 

Solving the set of n differential equations C1l we find 

co•plex eigenvalues and eigenvectors. 

2n conjugated 
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With 

f = 
dr 

• ,.. 
6 ,.. 

Cl) /2 - r-th resonance frequency 
dr 

11odal •ass of the r-th 11ode 

11odal da11ping of the r-th 11ode ldecay constantl 

c •odal stiffness of the r-th •ode ,.. 
x co•plex ele•ents of the r-th •ode 1 ,.. 

we have a relationship between the ele•ents of frequency response 11atrix 

H(f) = IH (f)) and the •odal qutlntities as follows: 
kl 

H I f l 
kl 

. t_f ',, ',,'', 
r=1l2[(1-f/f l+jd /21rf l 

dr r dr 

(2) 

In each case 1 in the vicinity of the r-th resonance doainates the •odal 

frequency response 

tircle. 

belanging to f 1 which m•y be approxi11ated by a 
dr 

Directly in resonance 1 f = f 1 applies 
dr 

Jt'f 
dr 

H (f l • -j 
k 1 dr 

c i 
r ,.. 

X X +R (f ) • D (f l+R (f ) 
rk rl kl dr kl dr kl dr 

(3) 

Here D is a co11plex quantity. Its absolute value is the dia11eter of 
kl 

the approxi•ating circle. For fixed k and fixed r apart fro• a constant 

D (f represenh the co11ponent x of the 110dt1l vector x • R 
k 1 dr rl r k 1 

describes the influence of the other 11odes 1 not being in resonance. 

2. PRINCIPLE OF COHPUTER-AIDED HODAL ANALYSIS 

Investigating •ulti-degree-of-freedoa syste11s the 11easured data have 

to be processed by nu11erical •ethods of data processing. Here the para•e

ter values 1 gained fro• the •easured frequency responses by following the 

•ethods for single-degree-of-freedo• syste•s are used as starting esti

••tes of curve-fitting aethods. 

We start fro• equation (2) which has to be •odified accordingly. 

When checking real •echanical syste•s in each case a li11ited frequency 
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range [i 1 f l is investigated only. For this reason 1 eq, (21 is 
A 8 

dissected 

H <i l :::r.-
k l 2 

1'1 (27ff) 
kl 

ln this equations •eans 

+ t{---- --} 
r=l 

+ s 
kl 

(4) 

1'1 - the residual •ass 1 describing the influence of resonances in 
kl 

the frequency range [ 0 1 f l on the range [ f 1 f ] 
A A 8 s 

kl 
- the residual stifines 1 describing the iniluence of resonances 

in the frequency range [f 1 oo on the range [f Al f ] 
8 8 

• - the nu•ber of resonances in [f Al f ] ' • < n. 
8 

Dividing the quantities D (f )d into real and haginary parts, Ne 
kl dr r 

find 

i 

6 dr 
D (i ) = -j -- X X = u + jv (5) 

r kl dr c rk rl klr klr 
r 

and introducing this into eq.(4l 1 the well known basic relation oi •odal 
l 

analysis results 1 

H (fl=- ----
k 1 2 

" (21(f) 
kl 

• { u + jv 
+ L klr klr 

r=l Ö +j2K<f-f ) 
r dr 

+ 
u - jv 1 klr klr 

6 + j21('(i+i ) + 
r dr 

s 
kl 

(6) 

By this ior•ula it is possible to describe approxi•ately the syste•s 

behaviour in the frequency range [f , f l with a s•all nu•ber of degrees 
A B 

of freedo•. This is a decisive advantage of the •odal view. 

The basic idea oi co•puter aided •odal analysis consists oi an appro

xi•ation (curve fittingl of the analytical ter• to the •easured data as 

good as possible. This curve fitting is carried out by •eans of least 

square •ethods. 
2 

The nonlinear equations, resulting fro• the de•and Htf l I ----> l'lin 

are solved iteratively. Mith the correction values, obtained fro• these 

equations the starting esti•ates are i•proved.After obtaining a predeter

•ined li•it of the su• of squared deviations the calculation is stopped. 
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The progr•••e p1ck1ge •odil Analysis, developed 1t the Tec~nical 

University of "•gdeburg •orks according to the follo•ing principle: 

1. Input of the nu•ber of degrees of freedo• to be 1nalysed 

2. Input of starting esti•ates of d and f Cfor instance taken 
r dr 

fro• the i•aginary part of H (fll 
kl 

3. Calculation of starting esti•ates of u , V 
klr 

and the residues 

" S by •eans of a linear set of 
1clr 

equations 
k 1 ' k 1 

4. Iterative deter•ination of 4n •odal quantities u , v ,6, f 
klr klr r dr 

of the t•o residuals " and S 
kl kl 

and 

5. Calculation of H Cfl according to eq. (31 and deter•ination of a set 
kl 

of corrections 

The •ethod is applicable up to n • 17. This li•itation depends on the 
•ax 

capacity of the pri•ary store of the co•puter. 

3. "ODAL ANALYSIS OF A BED PLATE OF A PRECISION INSTRU"ENT 

3. 1. Description and ai• 

The subject under investigation is sho•n in fig 1. The ai• •as to 

deter•ine eigenfrequencies and eigen•odes in a frequency range 10-1000 Hz 

on 1 prototype. The results •ere •eant to provide vibration-free opera-

Fig.1. Photo of the bed plate 
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tion. Those aodes at which a deforaation of the plate itself occured, 
were of essential interest, as the rigid body aotions, depending on the 

supporting conditions, were not regarded of interest. 

The investigations were carried out theoretically by 
4 

calculating eigenfrequencies and aodes by aeans of FE" and experiaental-

ly by aeans of vibration aeasureaents. The FEH calculations were carried 

out without da•ping. 80 points according to fig. 2 were defined as 

points of aeasureaent. During the experiaental investigations the plate 

was supported on a soft. three - point rubber spring supporting as well as 

on a foaa rubber aat. 

3.2. "easure•ent engineering probleas 

The experiaental investigations were carried out by aeans of a pseudo

randoa excitation and subsequent aodal analysis lphase·separation tech

niquel. The plate was excited by an electrodynaaic exciter in the fre

quency range 10 - 1024 Hz. 

The eigenfrequencies and soae eigenaodes were aeasured for coapari

tative purposes by haraonic excitation, too. These last aentioned aea

sureaents were carried out with a frequency - selective aeasuring aethod 

IYibroportl. The tiae expense in this case was very high, 60- 90 ain per 

aode. 

The excitation by pseudorandoa signals was carried out as described in, 
the previous paper: There was a· direct coupling between coaputer and test 

rig. An interaediate storage is not neccessary. In each case the gene

rated 4 independent sections of the signal were fed via a power aapli
fier into the exciter. The exciting force at a fixed point and accelera

tion at one of the 80 aeasure•ent points were aeasured and read in the 

coaputer again and stored. The tiae effort including the calculation of 

four frequency responces, averaging aKd coherence funktion was about 

1 ain per aeasuring point. As the rigid body frequencies were not of 

interest and because of the bad coherence at low frequencies the fre

quency range was liaited to > 50 Hz by high - pass filtering. 

The point of excitation, point 53, was chosen, as no nodal line is run

ning through this point Cexcept rigid body vibrationsl.The evaluable fre

quency range was liaited to 1024 Hz by the saapling frequency of 204a Hz. 
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3.3. Processing of aeasured data by phase separation technique 

Froa the aeasured ti•e functions the averaged cross po•er spectra 

6 Cfl bet•een exciting force FCtl and acceleration x Ctl of the •easu-
xiF - i 

ring point and the auto-po•er-spectra 6 •ere calculated and fro• these 
FF 

spectra 80 frequency responses of dynaaic flexibility 

2 2-
H Cf I = - G Cf I/41C f 6 C f I 

i53 xiF FF 
i = 1 ' ••• '80 

According to the 4 independent measure•ents at each •easuring point in 

each case four frequency responses •ere averaged. 

These averaged frequency responses •ere plotted partly Cas Nyquist -

plots, fig. 3a as exaaple and printing listsl and the starting estiaates 

for the aodal analysis routines •ere taken froa the plots. Because of the 

relative insensitivity of the •ethod in vie• of differing starting esti

aates of daaping in each case the sa•e starting value ofcf •as predeter

ained Ctable 11. Fra• the 80 frequency responses, obtained by curve 

fitting Cfig. 31 the co•plex eigenaodes can be deducted Cfig. 5 and 61. 

-RalHI 

Fig.3. Frequency response H of the plate 
753 

al aeasured Cinertancel 
bl analytical Crecephncel 
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3.4. Results 
The frequency responses, eeasured at the eeasuring point 53 contained 

6 utilizable eigenfrequencies f , ••••• ,f . Froe these f =63Hz is a 
1 6 1 

rigid-body frequency. A coeparison calculation had proved, that the 6 

measured eigenfrequencies coeprised all possible eigenfrequencies in the 

range of interest. The starting estieate 

by a half-width of the resonance peaks 

value result different daaping ratios 

of damping was 

of f = cf 1'21t =. 

~ ~c:I'Jw 

uniforely defined 

2Hz. Froe this 

The results of 
i oi 

•odal analysis are sueearized in table 1. 

The calculation by •eans of finite eluent eethod based on the eesh 
4 

in fig. 4 was carried out by eeans of the prograaae package COSAR. The 

spatial calculation eodel consists of 267 eleeents and 785 nodes. The 

calculations were eade with different stiffness para11eters of the supp-

orts. The results are sua•arized in table 2. The deviations in X refer to 

the measured values. 

Table 1. Starting estieates and •odal paraeeters of the plate under 
investigation. Frequency response H 4 averages 

1----------
1 
I 
I .----------1 
I 
I 

starting 

estieates 

1 •odal 
I 
I 

lpara•eters 
I 
I 

I after 
I 
I 
I 
I 
I 

7 
I I 

I i terati ons I 

f <Hz I 

f = 63 
1 

f =246 
2 

f =394 
3 

f =590 
4 

f =666 
5 

f =748 
6 

7053 

~ <cf. =12,57/sl u (u/Nsl 
1 1 

~ =0,032 
1 

.3- =0,0081 
2 

~ =0,0051 
3 

~ =0,0034 
4 

~ =0,0030 
5 

~ =0,0028 
6 

---------- ---------------,----------
f = 62,32 ~ =0,0793 u =-,51E-4 

1 1 1 
f =242,12 ~ =0,0299 u =-,42E-2 

2 2 2 
f =394,20 ~ =0,0055 u =-,21E-2 

3 : 3 3 
f =589,951~ =0,0044 u =-,60E-4 

4 I 4 4 
f =667 1 351~ =0 1 0075 u =- 1 93E-4 

5 I 5 5 
f =746,561~ =0,0026 u =-,17E-4 

6 I 6 6 
I 

------------· 
v (ee/Nsl 

V ,._ 79E-4 
1 ' 

V =- 89E-2 
2 ' 

V :o+,74E-2 
3 

V =+,17E-2 
4 

V =+,21E-2 
5 

V =+,86E-3 
6 
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T.lble 2 Calculated and •easured eigenfrequencies 

f 
: i 
~--- ---
1 1 

2 

3 

4 

5 

6 

soft support 

c =c =c •0,5 NI•• 
X y Z 

Hz I deviation 'X 
I 

7 212.7 -5.0 

8 403.2 2.1 

9 546.0 -7.5 

10 682.6 2.0 

11 811.8 8.4 

12 1114.6 2.9 

13 1258.7 2.8 

14 1330.1 1.1 

15 1446.9 3.9 

nearly real support 

c =c =150 NI•• 

•easured 

values 

c ~85~ NI .. 
z 

Hz : deviation 'X 
I 

Hz 

24.1 -18.9 29.7 

31.2 

41.2 

63.3 

66.0 

25.2 -19.2 

34.5 

54.0 

61.9 

86.7 

231.9 

407.7 

547.3 

685.9 

815.8 

1116.0 

1260.9 

1333.3 

1452.1 

-16.3 

-14.3 

- 6.2 

-12.6 99.2 

- 4.2 242.1 

2.4 394.2 

- 7.2 590,0 

2.6 667.4 

9.6 746.6 

3.1 1082 

2.7 1228 

1.4 1315 

4.1 1395 

The nodal lines of the eiten•odes, deter•ined by •odal analysis and by 

FE" calculation lwith~ut daapingl are co•pared in fig. 5. Because of 

ls•alll nonproportional da•ping, the question here concerns lines with 

vibration •axiaa•. Fig. 6 exa•plifies two eigen•odes with a 

spatial presentation of the a•plitudes. 

3. 5. lnvestigations of accuracy 

The evaluation of the frequency responses in the whole frequency 

range, in our case with 6 eigenfrequencies takes a high expenditure of 

ti•e. Therefore, with this exa•ple investigations were •ade with the ai• 

of reducing the nuaber of degrees of freedo• taken into consideration in 

each case. In the borderline case this •eans to analyse each eigen-
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5853 
r~nge 512-768 Hz, 2Hz(~) and 
0.5 Hz(b) frequency resolution 

frequency separately, according to the single-degree-of-freedo• •ethod. 

Fig. 7 shows the saving of ti•e for evaluation of one <averaged) 

frequency response. The devi~tion of •od~l para•eters due to this reduc

tion was negligibly uall <hble 3). 

hble 31 

degree of 

"od~l para•eters c~lcul~ted under conditions of 
different effective degrees of freedo•, f • 394 Hz 
••~suring point 70 

freedo• f J' u V 
I 
I 
I 
I -------------------- ------------ --------- ----------- ---------. I 

5 (7 iter~tionsl 394.20 13.57 -.214E-2 • 737E-2 I 

4 (5 1 terationsl 394·. 24 13.26 -.197E-2 .725E-2 

2 (5 iterationsl 394.17 13.57 -.226E-2 • 736E-2 

(5 iter~tionsl 394.21 13.13 -.207E-2 .718E-2 

-------------------- ------------ --------- ----------- ---------

The influence of a •odific~tion of the truncation const~nt for the iter~

tions was investigated in a si•ilar way. The truncation constant, i.e. 

the ratio of st~ndard devi~tions <the su• of the re•aining error squ~

resl of the •easured and analytical frequency response of successive 
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iteration steps in the co•plex plane, is predeter•ined in the progra••e 
by 0 1 95. Di•ishing this value to 0,5 did not change the •odal para•eters 

in any way Ctable 4). The reason for this behaviour can be seen in the 

quality of the frequency responses •easured by means of pseudorando• 

signals and in great distances between resonances. 

Table 4: "odal para•eters calculated with different truncation 
constants. f = 667 Hz, n •4 degrees of freedo•. 

eff 

truncation constant f f u V 
H -------------------- ----------- ---- ------ ---------- --------

0.95 (5 iterations) 667.37 4.62 -.824E-4 .193E-2 

0.80 (5 iterations) 667.37 4.62 -.824E-4 .193E-2 

0.50 (4 iterations) 667.37 4.62 -.821E-4 .193E-2 

0.40 (4 iterations) 667.37 4.62 -.821E-4 .l93E-2 

The frequency bandwidth of the underlying spectra was 2 Hz, resulting 

fro• a frequency range up to 1024 Hz with 512 discrete values in the 

spectru•. A higher accuracy due to a higher frequency resolution is 

possible by using narrow-band pseudorando• and zoo• transfor•ation in 

the frequency ranges of interest. The results of the frequency resolu

tions 2Hz and 0 1 5 Hz, respectively, are co•pared in fig. 8. The Nyquist 

plot is essentially i•proved. This •ethod, proving its worth in the case 

of narrowly neighbouring eigenfrequencies but de•anding a Ionger calcu

lation ti•e, did not lead to i•proved results in the present case. 

4. CONCLUSIONS 

The results underline that the •ethod of experi•ental •odal analysis 

is an effective •eans for deter•ining the dyna•ic qualities of co•pli

cated structures • The effort of a single investigation of such a kind of 

structures is essentally ••aller than a calculation by FE". On the basis 

of a verified calculation •odel, the latter results in •ore advantageaus 

po~sibilities of investigating different variants. 

The eigen•odes point out that the plate ~s relatively soft in the 
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right upper part. The coincidence of the eigen•odes of interest is satis
factory. The eigenfrequencies shoN deviations up to 10 X. Here investiga

tions ai•ing at a systeaatic i•prove•ent of the calculation aodel are 

neccessary. 
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ESTIMATION OF DYNAMIC SPRING AND 
DAMPING PARAMETERS OF THE SUPPORTSOFA NUCLEAR REACTOR 

BY MEANS OF AN ADAPTIVE METROD IN TIME DOMAIN 

A. Llapner 
Univenity of Tedmolou Otto von Gaerkke, Ma........., GOR 

s. Doeae 
Teclmlcal UDIYenity, Dnlden, G.D.R. 

1. INTRODUCTION 

In connection Mith the construction of poMerful nuclear poMer sta

tions in the 6DR a dyna•ic •odel of the reactor should be derived 1 

suitable for assessing •easured data for diagnostics purposes. Therefore 

it Mas neccessary to find a structural setup and confir• and deter•ine 

the para•eters of the •odel. 

"easure•ents could be •ade at tMo reactors during asse•bling in 

different asse•bly states. 

The task involved the develop•ent of the •ethod including progra••ing as 

Mell as carrying out •easure•ents and evidence of efficiency of the 

•ethod. At the beginning, there Mas no experience Mith •echanical syste•• 

of such large di•ensions <•ore than 200 ~1. 

2. DESCRIPTION OF THE SYSTE" 

A principal sehne of the reactor venel is shoMn in fig. 1. The 

vessel Mith a total •ass of •ore than 200t is supported beloN the pipe 
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PIPe flonges 

' Clrculor support 

...-> pomls of ercllolion 
On<! meoslln!menl 

Fig.l. Principal scheae of the reactor vessel 

flanges on a circular support. Ih centre of gravity i s close 

plane. The helve pipes leading to the six heat excllangers 

influence on the supporting stiffness with the consequence 

support of the reactor vessel is not rotationally syaaetrical. 

1 '2 
3. "ETHOD OF SOLUTION 

to the ring 

excert an 

that the 

Froa preliainary investigations such as statical loading, frequency 

analysis of response functions with a very good acccuracy the supposition 

of a rigid body aodel could be confiraed • A systea of such large diaen

sions like a reactor vessel can be excited practically only by aeans of 

a step excitation realized by fracture eleaents. The vessel was excited 

in horizontal and vertical direction at two different points (fig. 11. 

The displaceaents were aeasured at the saae points. 

Nith the aia to deteraine the starting estiaates a rotationally 

syaaetrical aodel was assuaed. Based on this two possible aodels a four

and a three-point supported vessel were investigated.Such aodels allow 
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due to detoupling the diffe

rential equations a siaple 

para•eter esti•ation. 

The esti•ation of spring 

and da•ping para•eters is 

tarried out by •eans of an 

adaptive •ethod, 

the response funttion of a 

•athe•atital •odel with the 

•easured data. 

The resulting 

aetritally supported rigid

body-•odel is used later as a 

basis for interpreting vibra

tion •easure•ents during the 

operation 
3 

vessel. 

of the reattor 

4. THE HETHOD OF PARAMETER 
ADJUSTHENT 

The •ethod of para•eter 

adjust•ent used here to•pares 

and •inizes the su• of squa

res of differentes between 

distrete 

•easured 

values of 

tiae signal 

the 

and 

torresponding values of a 

to•putational •odel.The basit 

printiple is shown in fig. 2. 

The differential equation 

syste• of a general rigid

body-•odel <fig. 3l tonsists 

of 6 toupled differential 

equations.x, y, z at the sa•e 

oeometriCOI Irons -
rormohon 10 lhe 
J)OIOis ol 
meosurement 

q.,· T q 

513 

Fig.2. Printiple of the adaptive •ethod 
for the adjust•ent of the •odel 
para•eters 

1-1, . ,n 

Fig.3. Beneral rigid body •odel 
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tiae •re the princip•l •xes of inerti•. 

Let '!, '! , 'f the rohtiond •ngles rehted to these ues. Then the 
II y Z 

differenti•l equ•tions Mith the vector of coordin•tes q = <x, y, z, ~, 
T X 

'! , 'j ) ue u follou: 
y z "q +Bq+ Cq • f(tl (1) 

In this equ•tion the ••ss ••trix "is di•gon•l, the stiffnes ••trix Cis 

sy••etric•l •• folloMs: 

C-

i ••rks the spring <i • 1, 2, 3 or i = 1, •••• ,41, the 1 •re the dist•n-

ces betMeen the points of spring •pplication and the centre of gr•vity. 

The d•aping ••trix is· set up •nalogously. The exciting vector depends on 

the point of the transient excit•tion. 

The solution vector q<tl of the ••the••tic•l •odel has to be trans

for•ed by • geo•etric•l transforaation to the •••suring points of the 

real syste• <the vessell. As a result Ne find the calculated aodel res

ponse q • The aeasured response of the vessel is q • The solution of <ll 
• • 4 

M•s c•rried out by aeans of recursive nuaerical integration. The tiae 

step 0.008 s of integration coincides Mith the ti•e step of discretisa

tion of the •easured ti•e function. The differences betMeen the discrete 

values of q and q fora a vector ~q•q - q , containing as •uch eleaents 
• s • s 

as discrete values result fro• •eisureaent and calculation respectively. 
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As loss functions FCxl of •lni•ization •ere used t•o functions1 
1. Meighted least squares <•eighting •atrix M, later M•Il 

T 
F Cxl • Äq M Aq 

2. The product of a •eighting vector M Mith the vector ldql•lq -q 1: 
• • FCil = MIAql 

515 

i = (x , x , ••••• ,x l is the vector of the variable~ of the •odel. Fro• 
l 2 n 

4 springs (Mith 3 para•eters eachl, 4 da•pers and 6 •ass or inertia 

result 30 para•eters as a •hole. 

As the coordinates q of the •athe•atical •odel depend in a nonlinear May 

" on the para•eters of the •odel a nonlinear adjust•ent proble• results. 

The nu•erical processing uses a gradient •ethod, introduced by 
5 

Zettl. 

Additionally to the a•ount of the loss function the coincidence of eigen

frequencies of the •odel and the •easured values ••s checked for suppor

ting structural suppositions and assess•ent of the result of para•eter 
6 

adjust•ent. For this purpose, available progra•••• •ere used. 

The adjust•ent algorith• de•anded and •ade it possible to take into 

account nu•erous co•putational specialities, allo•ing an econo•ical 

treat•ent of the proble•. 

5. DETER"INATION OF START YALUES 

Before starting the calculations, the para•eter vector x, being 

expected to converge to•ards the solution, has to be occupied Mith 

start values. 

al Spring para•eters fro• a test using free Vibrations 

Assu•ing a •Y••etrical •odel and that •••• para•eters and eigenfre

quencies are kno•n, the spring para•eters can be deter•ined easily under 

special conditions. 

For instance, under condition of double sy••etry e.g. related to the xz 

and yz-plane, the equations Cll are decoupled into t•o independent sys

te•s of equations, each consisting of t•o equations, and t•o totally 
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decoupled equ•tions. The corresponding deter•inants •re 

LC)(i.- mCJ 2 

~C)(i.Lxzi. 

~ . 2 
LC'JL- mc.:> 

L.cyi L::rti. 

LC~:i.- m(,J 2 = 0 

LC::~i. L~JCi f LCxd 2xyi. - Jzc./ .. 0 

A. Lingener - S. Doege 

-o (2) 

-o (3) 

(4) 

(5) 

The eigenfrequencies which •re neccessary for the deter•in•tion of the 

spring para1eters, 1ay be derived fro• a spectral analysis of the 

1easqred ti1e functions. 

The question of associating of the •easured eigenfrequencies to those of 

• sy11etrical 1odel in such a case cannot be decided una1biguously, such 

th•t 1ore th•n one passibility af the st•rt vector cauld result. Under 

these Suppositions fro1 the equations 121 ••• 151 1ay be derived Silph 

for1ulae for the spring para1eters fro1 which the nu•erical values of a 

sy••etric•l •odel can be deter•ined. 

bl Spring para1eters fro1 static investigations 

Under the Supposition of a linear syste• and if • sufficient nu1ber of 

st•tic 1easure1ents is •vailable the spring par••eters ••Y be deter•ined 

directly fro• the stiffness ••trix C in eq. 111 An indirect deter•ina

tion of static spring p•r••eters beginning with a start vector by adap

ting it to the 1easured values by •e•ns of • si1ilar •ethod as in the 

case of the dyn••ical 1odel is possible. Corresponding progra11es are 
6 

av.ilable. 

cl Da1ping p•ra•eters 

Fro1 experience follows th•t the deter1ination of start values for 

da1ping para1eters is difficult; As our proble1 could not be treated 
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without da•ping, the value resulting froa the ~pplic~tion of the well
known foraulae of daaping deterain~tion of one-degree-of-freedoa-systeas 

to the test using free vibr~tions was uniforaly supposed. 

The force, c~using the displaceaent 

of the vessel is applied by a hy-

draulic cylinder. The force is 

applied by aeans of a notched grey

c~st iron bolt 1 breaking under ~ 

load of uxiaua 300kN. ln this uy, 

under horizont~l loading displace

•ents of about 015 ma were pro

duced1 under vertical loading only 

about 0,1 ••· The loading device is 

shown in fig. 4. During the free 

vibr~tions after the breaking of 

the greycast iron bolt ae~sureaents 

were aade at different points of 

the vessel in horizontal ~nd verti-

punch 

-- hollow cyhnder 

nolched grey iron 
boll 

__ rneos.urill) n111 
( srro1n gauge r 

__ pmsure plole 

- svslem 

Fig.4. Loading device 

cal direction. Displaceaent was fixed as measuring qu~ntity. The aeasure-
aent was carried out with non-contacting inductive sensors, aeasuring ~t 

the same tiae the static displaceaent. Parallel ~cceleration aeasureaents 
were accoaplished by ae~ns of piezoelectric tr~nsducers. All ae~suring 

sign~ls, including the force were stored as analogue signals on ~ tape. 

The signals were s~apled with 125Hz s~apling frequency, ~• the resul

ting upper liaiting frequency was high enough. The highest frequency of 

interest of the vessel was nearing 50Hz. The positions of force ~pplica

tion ~nd measuring points are given in fig. 1. 

The aeasuring prograaae included a gre~t nuaber of aeasureaents ~t 

two reactor vessels during asseably. ln this way, the influence of diffe

rent installations and the Mater Ievel could be deterained. Al ~ whole, 

were carried out 38 different aeasurements. 
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7. RESULTB DF "EASURE"ENTS 

Principally during each test tNo 

ti•e functions Nere •easured: 

The displace•ent q in the direc-
o 

tion of force and perpendicular to 

that direction q90 • Exa•ples of 

•easured ti•e functions are presen
ted in fig. 5. Fra• the measured 

ti•e functions Nere derived a•pli

tude spectra, the characteristic 

shape of Nhich is presented in 

fig. 6. 

I 

I 

I 

I N \ 
,) "\.. 

~ .A ~ "./V' 
10 15 20 25 45 50 

t [Hz)-

I 

~~ 
~ 

'I ' 
.A V ~ 1--i 

15 20 25 ~5 50 

t [Hz] -

Fig.6. Absolute value of a•plitude 
spectru• of •easured 
dhpl ac .. ents 

A. Lingener - S. Doege 

=z 2100h Iom 
~ 0 ----~~---------

diSJ)Iocement m !orte d1rechon 

Fig.S. Signals of force and 
displace•ent caused by 
horizontal force 

Sprt~ ond dompers ot 
polnt i 

Cx I , Cyj , C Zi , Qxh Qyi, Qzi 

I• 1,2, l, ~ 

Fig.7. Rigid body •odel Nith 
4 support1ng points 
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8. PARAMETER ADJUSTMENT 

The method is presented for the case of a horizontal displace•ent of 

the empty vessel. The model with 4 supporting points Cdecoupling in the 

case of syuetryl is shown in fig. 7. If the dominating frequencies in 

the spectra (fig. 6.1 are taken as eigenfrequencies of a sy••etrically 

supported rigid-body-model, than the equations (21 - (5) lead to a start

model 1 (horizontal motionl. The numerical values of the parameters are 

given in table 1. 

Using these values of ·the parameters, the time-dapendent displace•ents of 

the different models 1 - 7 can be calculated. 

The result (fig. 81 shows that the measured time function is represented 

very imperfectly by the start-model 1. 

Model 2 resulted from the deliberation that in the vertical •easure•ents 

the eigenfrequencies of vertical vibrations shall do•inate. Now for 

economical reasons, in the next step the static displace•ent of the 

models 1 and 2 were adjusted, using the •ethod mentioned in paragraph 5b. 

The resulting models are 3 and 4. These models describe the real 

behaviour much better than model 1 (fig. 81 1 but not good enough as the 

springs remain symmetrically. 

To demoostrate the advantage of this procedure, the •odel 1 was i••e

diately adapted to the measured function. The result, model 51 is nearly 

the same <fig. Sl but the cal~ulation time was 36 ti•es •ore than for tha 

models 3 and 4. Finally, the damping parameters were adjusted. From •odel 

4 resulted model 6 1 from model 5 - model 7 (fig. 91 

These models guarantee a sufficiently exact description of the •easured 

time function and good coincidence of eigenfrequencies. In all cases 

F<xl = W14ql with W • I was used as ai• functional. 

An adjustment with the Mast square function was carried out too. The 

results, which are not presented in this paper were not better than with 

the method used here. 

In consequence of the inco•plate idantification Conly one input-output 

relationl the measured beating is not described by the models (fig.91. 

All models represent only the function q as the essential vibrational 
0 

characteristics during the operation of the vessel. fable 2 contains the 
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Table 1. Nu•erical para•eter values of different starting and 
hproved •odels 

1-----------1----- -------1--------1-------- --------:-------1 
•odel 2 3 4 5 6 7 

------,---- ------- -------- -------- -------- -------
c,.4 l10 Nl•l 4,9 2,7 5,09651 3,6151 2' 1945 2,4144 2,01791 
Cd • 4,9 2,7 5,09651 3,6151 3,4078 2,3329 2,50871 
Cd 4,9 2,7 5,09651 3,6151 1,8612 2,2863 1 '7996 1 

c"., 4,9 2,7 5,09651 3,6151 2,6828 2,271 2,682 
c yl 3,55 5,5 3,91951 6,276 9' 1253 6,0063 10,052 
Cy2. 3,55 5,5 3,91951 6,276 5,7531 6,0692 5,972 
Cy~ 3,55 5,5 3,91951 6,276 5,0949 5,8557 5,387 
Cy't • 3,551 5,51 3,91951 6,276 6,508 6,0692 7,0393 
Czi 30,5 4,9139,859 131,156 36,438 136,017 35,503 
Czz. 30,5 4,9147,417 151,418 53,065 158,108 56,606 
Cz3 30,5 4,9139,859 131 '156 36,212 136,017 36,911 
C:tft 30,5 ~- 4,9147,417 151,418 53,06 158,11 54,531 

I I ---- ------- -------- -------- -------- -------------,---- -----s"1 l10 Ns/•11 1,6584 1,3841 
Sxz. • I for all •odels 1,6768 1,3615 I 

~~-~ 
105 kg 

1,6507 1, 3374 
ql(; . "' 2. 1 1 ,6602 1,3447 

~yf 
1041 ~ 

1,2879 1,3592 

~y.Z. J" "' J!l = 3.3217 kg• 1,2879 1 '3207 
• 1,2556 1,3611 ~y) lOS' kg•2 

~y+ Jz • 7. 074 1,2556 1,3611 

h1 1,2333 1,3487 
ch.t for All •odels 1-5 unifor•ly 1,2871 l '3062 

• 1,2333 1,3512 ~Zl 10.- Nsl• es~~ Q =I. 285 1,2871 1,2961 

Table 21 Eigenfrequencies of different rigid-body-•odels 
and residual errors 

------- ------- ------- ------- ------- ------- ---------------1 
•odel f f f f f f y 

1 2 3 4 5 6 •in I 
I 

lHzl lHz l [Hz l [Hz l lHzl 
-~~:~-- :[!o_o~1J; ------- ------- ------- ------- ------- -------

1 11,48 12,00 15,01 15,04 16,92 38,31 18,63 
2 5,04 5,07 11,87 14,78 15,25 16,89 232,03 
3 12,87 13,31 15,51 17,60 17,81 45,84 6,66 
4 11,59 14,97 15,20 16,26 19,99 44,59 5,07 
5 10,12 14,76 14,79 15,29 20,34 46,40 3,97 
6 10,12 14,76 14,79 15,29 20,34 47,61 3,65 
7 9,97 14,91 15,38 16,35 21,48 47,01 3,38 

•eas. 17,801 13,18 15,38 lb,ll 19,80 149,801 
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eigenfrequencies of the different •odels And the residual error related 

to the •easured VAlues And 100 sA•ples i.e. 0,8 s. 

AnAlogous investigations Mere •ade for the case of three supporting 

points. Further•ore, the co•pletely asse•bled vessel, ready for opera-

tion Mas investigated. The different asse•bly states differed •ainly by 

their eigenfrequencies. 

Finally, to shoM the usefulness of the rigid-body •odel An extended 

•odel Mith 30 degrees of freedo• Nas calculated taking into account the 

bending stiffnes of the •ounted pipes connecting the vessel Mith the •ain 

circulation pu•ps and the •ain stop valves. These results e•phasized that 

the eigenfrequencies in the frequency range betMeen 7 and 20 Hz are not 

changed essentially. 

But the last and deciding criterion had to be the verification of 

the rigid-body-•odel during the operation of the reactor vessel. 

9. USEFULNESS OF THE RIBID-BODV-"ODEL 

The results of identification and para•eter ·deter•ination are the 

bAsis for •easure•ents And their evaluAtion during operation. A reliable 

•odel alloNs A SAfe interpretAtion of •easure•ents And a corresponding 

dhgnosis. 

TAble 3 co•pares the eigenfrequencies of the •odel Mith those resulting 

fro• frequency analysis of the vessel Vibration during operation. 

TAble 3: Eigenfrequencies of An AdApted rigid-body-•odel And 

frequencies during Operation lHzl 

f f f f fl f 
I 1 I 21 3 I I 41 51 I 6 

------------~--- --~--- -~--- --~------~--- -~--- -~-----~--- -
theoreticd I 6,9 I 8,3 I 11,3 I I 16,21 18,71 I 47,9 

: : I I I I I I 
experhent. I I 8,9 I 11,2 I 12,7 I 15,01 18,91 24,61 
____________ 1 ______ : _____ 1 ______ : ______ 1 _____ : _____ : _____ 1 ____ _ 
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These results alloM the folloMing conclusions. 
- The rigid-body-•odel is sufficient for 

reactor vessel Vibrations as a Mhole. 

the 

523 

description of 

- The frequency 24.6 Hz corresponds to the operational speed of the 

•ain circulation pu•ps and is no eigenfrequency. 

- The frequency 11.2 Hz is that Mith the greatest share of vibrational 

poMer; it represents a •ode, Mhich is fixed by the sv••etry plane of 

the Mhole primary circuit. Froa this follo•s, that the •ounted pipes 

are of essential influence an the stiffness of the supports. 

- The frequency 12.7 Hz cannot be associated to a vessel frequency. 

Further investigations have sho•n, that this frequency occurs above 

all at the flange of the vessel and that 

•easuring points is very loM. 

the coherence Mith other 

It is supposed, that the frequency 12.7 Hz concernes the so-called 
7 

reactor shaft Vibrations Mhich cannot be described by a rigid-body-

•odel. Here an extended •odel Nould be required, Mhich takes into 

consideration the internal structure of the vessel. 
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OPTIMIZATION OF A REDUCED TORSIONAL MODEL USING 
A PARAMETER IDENTIFICATION PROCEDURE 

P. Scbwibin1er, R. Nordawm 
UnJYenity of Kallenlautem, Kalsenlautem, F.R.G. 

INTRODUCTION 

Large steam turbine-generators in Operation may be stimulated to 

torsional vibrations by dynamic moments at the generator due to electri

cal system transients, Fig. 1. The induced torsional stresses have grown 

growing attention over the pas~ few years /1-3/. 

For the solution of the torsional vibration problem it is essential 

to find an appropriate torsional model for the turbine-generator shaft. 

A common approach is to model the torsional system by the finite element 

method. 

For some applications it is desirabie to have a törsional model 

with a reduced number of degrees of freedom (DOF), which reproduces the 

finite element model only in the lower eigenfrequencies and modes. One 

example, where a reduced torsional model is necessary, are torsional 

monitaring systems for the supervision of turbogenerators in operation. 
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A reduced torsional model is also required for the analysis of certain 

network disturbances, where the nonlinear coupling between the mecha

nical (= torsional vibration system, Fig. 1) and the electrical system 

(= generator and network) must be considered in the torsional analysis. 

Therefore this paper describes a method how to find a most accurate re

duced torsional model with discrete masses and springs from the finite 

element model. 

r-·-·-·-·-·, 
I I 

TrGII.-illion NETWORK----t 
liftll 

GENERATOR 
Palll • • (quoti-

I 
,'---..-1~ 

I Tran••-• 
I 
L--·- ·--·.J 

r· ., 
! : 
! i 
! ~ ~ i 
I . lilntrator -Aotw , rings j 
L·-·-·-·-·-·-·-.-. _.i...., ........ _ •. _ . .....!_._.J 

TORS!ONAL YIBRAT!ON $YSTEM 
Finite a-t or DiiCI'I.. ,.... Mocltl 

Fig. 1 Subsystems for calculating the effects of electrical system 

faults 
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FINITE ELEMENT MODEL 

Modelling of Turbogenerator Shaft. In the first step we transform 

the real systeminan equivalent mechanical model.·Therefore the tur

bine-generator shaft is subdivided in N-1 finite torsional elements, 

Fig. 2. We consider small - that means linearized - torsional vibrations 

about a stationary rotation of the shaft. 

TURBOGENERATOR 
SET 

I p 

HP 

FINITE ELEMENT 
MODEL I 250 OOF I 

TORSION AL 
ELEMENT 

K l!li [1 -1.] 
-e • I ·1 1 

Hass-Matrix Stiffness-Hatrix 

Fig. 2 Transformation of the turbogenerator ~n a mechanical model 
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By using the principle of virtual work we can describe the dynamic 

behavior of our model mathematically; we get the mathematical model. 

N-1 
ow = E ow~ + 

e=1 ~ 

virtual work 

N-1 
E owe 

e=1 T 

virtual work 

+ 
N-1 

E 
e=1 

virtual work 

( 1 ) 

of elastical moments of inertia moments of external moments 

If we approximate the unknown torsional displacement in an element with 

static deflection functions, we obtain a 2x2 mass- and stiffness-matrix, 

which describe its dynamic behavior. Each element has two nodes with one 

angular DOF each. Superposition of the element matrices yields the mass

and stiffness-matrix for the complete system ~ and !· The damping matrix 

is assumed as proportional to ~ respectively !· 

D=aM+ß! (2) 

t-1odal Parameters of the Torsional Problem. The equations of mo

tion are solved for the natural vibrations, we get form the homogeneous 

equations of motion. 

Assuming a solution of the form 

At 
g_(t) =~ e 

we obtain the eigenvalue problern 

(! - xF~l ! = Q 

/ \ 
Eigenvalues X. Modes <p. 

~ -~ 

(3) 

( 4) 

with "XF = - 'A2 (5) 
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REDUCTION OF THE FINITE ELEMENT MODEL 

If we discretisize e.g. a 600 MW turbine-generator in about 250 

torsional elements the described finite element model 1s a very good 

model for the dynamical behavior of the shaft. Why do we need an addi

tional reduced model? 

529 

A reduced model for the turbogenerator is needed for the analysis 

of electrical transients, 1n which the coupling of the torsional shaft 

model with the electrical network is remarkable /1 ,3/. Because the model 

of the electrical system contributes additional variables to the prob

lern and makes it highly nonlinear, a reduced torsional model is essen

tial to limit the number of DOF for the coupled electrical-mechanical 

model. Another example where a reduced torsional model is often used 

are torsional monitoring system for the supervision of turbogenerators 

in operation. 

Reduction Algorithm. There exist different methods to reduce the 

systems DOF; e.g. static-, dynamic- and modal-condensation. Especially 

for torsional chains a very effective reduction algorithm can be deve

loped using an electrical analogous model for the shaft train /4-6/. To 

apply the reduction algorithm to the finite element model, in a first 

step we have to transform it to a lumped mass model, Fig. 3. This is 

done by an equal distribution of the mass of an element to its nodes. 

In a secend step we reduce this large lumped mass model with an electri

cal-mechanical analogy method to a reduced discrete mass model, we'll 

call further on reduced model. 

This reduced model differs in its eigenfrequencies from the accurate 

finite element model. Therefore it is our goal to improve the reduced 

torsional modell by fitting it to the finite element model with many 

DOF. The fitted reduced model we'll call further on improved reduced 

model. 
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FINITE ELEMENT 
MODEL IN - OOFI 

DISCRETE MASS 

MODEL IN-OOF I 

REDUCED DISCRETE 
MASS MODEL (n- OOFI 

P. Schwibinger- R. Nordmann 

Fig. 3 Reduction of the finite element model of a turbogenerator 

to a discrete mass model 

Improvement of the Reduced Model. 

Basic Idea. The fitting of the reduced model is performed by an 

indirect parameter identification method /7,8/. Fig. 4 shows the basic 

idea: On the one side there is the finite element model with its eigen

values A~. On the other side the reduced model yieldsthe eigenvalues r .. 
1 1 

In general they differ from the solutions of the finite element model. 

The goal is to improve the parameters of the reduced model (e.g. its 
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stiffnesses) in a way, that they correspond better with the solutions 
of the finite element model. The applied algorithm improves the para
meters by minimizing the difference between the eigenvalues of the re

duced model and the finite element model iteratively. 

FITTING OF THE REOUCED MODEL 

FINITE-ELEMENT MODEL REDUCED MODEL 

DIFFERENCES IN EIGENVALUES 

}., X2 X, · · · · · · 1 , · · · · . }., 

FITTING OF THE REDUCED MODEL 

Fig. 4 Fitting of the reduced model by means of the eigenvalues 

531 

Because the masses and its distribution along the shaft of the re
duced model looks physically sensible compared to the turbine-generator 

shaft, the mass matrix M of the reduced model is supposed tobe correct. 
Damping is not taken into account for the fitting process. In the cal
culations for the described torsional system damping is introduced by 
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'modal damping factors' (2) after the reduction and fitting process. 

The identification procedure can therefore be limited to the torsional 

stiffnesses arranged in the stiffness matrix !· 

Derivation of the Identification Algorithm. We partition the 

stiffness matrix _Kin submatrices K. with the corrective factors a .• 
-J J 

m 
! = r 

j=1 
a.K. 
rJ 

(6) 

For the torsional chain, we take preferably the springs between the in

dividual rotational masses as substructures. Fig. 5 shows two reasonable 

possibilities to define substructures in the reduced model: In one case 

every individual spring forms an independent substructure; in the other 

case two adjacent springs are summarized in one submatrix. The following 

example of application will show, which kind of substructuring proves 

to be the better one. 

The eigenvalue problem of the reduced model yields its eigenvalues 

(K - X M) ' = 0 - - - - (7) 

I. and the corresponding eigenvectors , .• If we normalize the generali-
1 -1 

zed mass equal one and partition the stiffness matrix (6), we get from 

(7) the eigenvalues as a function of the corrective factors a .• 
J 

T m 
I 1. = _,1. (1: a.K.) , . 

J_, -1 
j=1 " 

(8) 

It is our goal to determine the corrective factors minimizing the dif

ference ('residuals') between the eigenvalues X~ of the finite element 
1 

model and the corresponding eigenvalues I. of the reduced model. 
1 

F T F T 
v. =X. - "· = 1. -,. (1: a.K.), 

1 1 1 1 -1 j J-J -i 
(9) 
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, .... CHO ICE OF SUBSTRUCTURES 0 

SPR INGS UNCOUPLED 

SPRINGS COUPLE D 

m 

K = [ a i . ~i 
j=1 

SUBSTRUCTURE K . 
-1 

j • 1, · · . , m 
m = n - 1 

SUBSTRUCTURE ~j • 

j •1, .. . , m 
n-1 m=-
2 

, .... .... n 

.. wo.J 

1 .. .. · .. n 

H.Cil· J 

Fig. 5 Choice of substructures for the fitting process 

Considering several eigenvalues, the residuals can be arranged ~n the 

vector ~ and the corrective factors in the vector a. The least square 

method leads with the weight matrix ~ to an equation system, which can 

be solved iteratively for the unknown corrective factors a. 

= (10) 

Dv ~s the sensitivity matrix with the generalized stiffnesses of the sub-
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matrices. 

T Dv .. = cp • K. cp. 
l.J -l. -J-"1 

The partial derivative 

av. aX. T 
l. l. - -.., - = -.., - = cp • K . cp. 

oa . oa . - l. -:J ~ 
J J 

P. Schwibinger- R. Nordmann 

( 11 ) 

(12) 

points out the sensitivity of the eigenvalue I. with regard to the sub
l. 

matrix K .• Fig. 6 shows the first row of the sensitivity matrix Dv: the 
-J 

influence coefficients of the first eigenvalue to the torsional stiff-

nesses of the shaft. In this case every torsional spring between two 

masses is considered as one independent substructure. Obviously the 

first eigenvalue is strongly influenced by the coupling stiffness bet

ween the two low pressure turbines (LP1-LP2) while the outer springs 

have nearly no effect. This becomes clear with the associated eigenvec

tor, which has its main deflection (max. gradient) in the middle of the 

shaft, 

The vector ~ contains the eigenvalues of the finite element model. 

b. = 1~ (13) 
l. l. 

As (11) depends on the eigenvalues of the fitted model, (16) must be 

solved together with the eigenvalue problem (7). The procedure is sum

marized in the scheme of Fig. 7. 

Analysis Results and Discussion. The torsional finite element mo

del of a 600 MW turbogenerator with 250 DOF is reduced to a 13 DOF dis

crete mass model by the electrical-mechanical analogy method. The fit

ting procedure of Fig. 7 is then applied to this reduced model to im

prove its torsional stiffnesses. 
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RELATIVE SENSITIVITIES 
of 1.tigtnvalut to torsional stiffnuus 

5 

DISCRETE HASS MODEL 

1. EIGENVECTOR 

Fig. 6 Relative sensitivities of first eigenvalue to change 

of torsional stiffnesses 
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Modal Parameters. Fig . 8 shows that the eigenfrequencies of the 

reduced model are all to low compared to the finite element model . The 

error increases in the higher frequencies, e.g. is about 18 % in .the 

eleventh eigenfrequency. It has to be noted that the quality of the re

duced model is not the best possible by the reduction algorithm with 

the electrical-mechanical analogy method. It is nevertheless used to 

show the efficiency of the fitting procedure. 
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START 

1=0 i ~=.e. 

NEW STIFFNESS MATRIX 

K 11~ t a!ll. K · 
- J -J 

P. Schwibinger- R. Nordmann 

SOI.VING THE EIGENVALUE PROBLEM 

I K'n- iu. M l·IPIIl = 0 
- 1- -1 -

IP'-11 ~ M · 1P. = 1 
-1 - -1 

SENSITIVITIES 

SOLVING EQUATION 113) 

Fig. 7 Scheme of the fitting algorithm 

To improve particularly the more important lower eigenfrequencies, 

the following weight matrix W is introduced. 

( 14) 

Besides the weight matrix the choice of the submatrices K. in (6), 
-J 

Fig. 5, has a strong influence on the improvement of the reduced model. 

If all torsional springs form independent substructures, we found this 

lead to divergence of the fitting algorithm for systems with more than 
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M Error of the 
-= % eigenfrequencies 
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Fig. 8 Errors in eigenfrequencies of the reduced and the improved 
reduced model compared with the finite element model 
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six DOF. To solve the problem the total stiffness matrix was subdivided 
in different substructures, whereas one substructure summarizes two or 
several springs. If two adjacent springs are summarized in one substruc
ture, as it is shown in Fig. 5, convergence of the fitting algorithm is 
achieved in all calculations. Fig. 8 shows the errors in the eigenfre
quencies after the fitting process with two coupled springs as one sub
structure. The eigenfrequencies in the lower. modes (1-200Hz) almest 
coincide with the finite element solutions, while the errors in the 
higher modes are still up to 7 %. When we fit this reduced model a se
cond time, all springs may form an independent substructure and the al
gorithm converges and yields excellent results in the eigenfrequencies, 
Fig. 8. After this secend step all twelve eigenfrequencies of the im-



www.manaraa.com

538 P. Schwibinger- R. Nordmann 

proved reduced model almest coincide with the solutions of the finite 

element model. 

The results presented next are all calculated by this twice im

proved reduced model. 

The introduced algorithm, Fig. 7, corrects simultaneously with the 

fitting of the eigenfrequencies via the eigenvalue problem also the 

eigenvectors of the reduced model. The amplitudes and zero passages of 

the improved reduced model represent the modes of the finite element 

very good, Fig. 9. 

FINITE-ELEMENT MODEL IMPROVED REDUCED MODEL 
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+· .. • e o • 

-1 

-1 

J· 
1r _. 249.5Hz 
0 V 8 B 

-1 

: ~j-----------1-51~·~ 
-1 
:~~-----1S_~_9H_z ________ __ 

- 1 

1L_Jilh. 249.sHz or ~ww~~~~~---------------
·1 

Fig. 9 Modes of the finite element and the improved reduced model 
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Transient Vibrations. The practician will also ask: How good is 

the improved reduced model for the calculation of elastic stresses at 

the couplings due to electrical excitation moments? 

539 

Fig. 10 shows the time history of the elastic moment in the coup

ling between the low pressure turbine and the generator . The maximum 

-11 I I I I I 

ELASTIC MOMENTS 

"Short 
Circuit~ 

150 
Timl'/ms 

REOUCED MODEL 5 ~ 10, Nm 

M ·rv ~ " .... /®V 1o~ ,5o 
-10 

III!II -
~ 5 •10' Nm 

M ORt' A ~ ..-.... ®\:lso~oo~"=""',so 
IMPROVED REOUCED -10 

MODEL Finite Eleml'nt (FE)-Modl'l 

Reduced Model 

lmproved Reduced Model 

Fig. 10 Elastic moment in the LP2-Generator coupling due to a short

circuit for the finite element model, the reduced model and 

the improved reduced model 

elastic moment occurs at this coupling, which is also the critical cross 

section in our case. The system is excited by steam forces at the tur

bines and the electrical moment due to a short circuit. 

We can see, that the elastic moment in the coupling of the reduced 
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model differs in amplitude and phase from the solution of the finite 
element model, while the improved reduced model yields considerable bet
ter results. 

In Fig. 11 the maximum amplitudes of the coupling moments of the 
finite element model are compared with the solutions of the reduced 
resp. the improved reduced model. The reduced model yields elastic mo
ments, which are up to 17 % to low whereas the error of the fitted mo

del is only 2 %. 

t.M 
% 

20 

10 

I 
I 
I 
I 
I 
I 

-r-! Ii I I 
I 

"Short 
/ ~ Circuit " 

M. 

li I! HH H-
ERROR IN MAX. 

(OUPliNG MOMENT 

0 -REOUCED MODEl 

j?1 IMPROVED 
IZ:j - REDUCED MODEL 

Fig. 11 Error in the max. coupling moment due to a short-circuit for 

the reduced and the improved reduced model 
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CONCLUSIONS 

To calculate the torsional vibrations of turbine-generator sets 

the dynamic behavior of the shaft system can be modelled by the finite 
element method. The result are the linear equations of motion. The so
lution for the natural vibrations yields the eigenfrequencies and modes. 

For a coupled electrical-mechanical torsional analysis and tor
sional monitaring systems a reduced torsional model for the shaft system 
is required. Therefore an algorithm is developed to reduce the finite
element model with many DOF to a discrete mass model with up to 20 DOF. 
The reduced torsional model is optimized by fitting its eigenfrequencies 
to the lower spectrum of a large finite element model. Therefore a para
meter identification algorithm is used. The described procedure provea 
in practice to yield good results concerning 

• the eigenfrequencies and modes 

• the coupling moments due to electrical system transients. 
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IDENTIFICATION OF STIFFNESS, DAMPING AND INERTIA 
COEFFICIENTS OF ANNULAR TURBULENT SEALS 

R. NordiiWID 
Uainnity of Kailenlautena, Klilenlautem, F.R.G. 

Introduction 

An important assumption for the reliability of high speed centri

fugal pumps is a good rotordynamic behavior. Connected to this problern 

hydraulic forces acting on the rotor are of major importance. It is 

well known that neck ring seals as well as interstage seals (Fig. 1) 

may have a large influence on the bending Vibrations of a pump rotor. 

Besides their designed function of reducing the leakage flow between 

the impeller outlet and inlet or between two adjacent pump stages, the 

contactless seals have the potential to develop significant forces. 

This type of forces, created by lateral rotor vibrations can be des

cribed by a linear model with stiffness, damping and inertia coeffi

cients. 

If contactless seal elements are used in a turbopump the fluid

mechanical interactions have to be considered when predicting the vi

bration behavior of the pump rotor in the design process. However, 
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TURBOPUMP TURBINE 

Fig . Seals of a High- Pressure-Turbopump Rotor in 

Aerospace Engineer ing 

R. Nordmann 

there is often a uncertainty, concerning the data for the dynamic coef

ficients. Up to now the stiffness and damping characteristics of seals 

are not very well known and there is a need for additional research in 

this area. This is particularly the case for grooved seals, which are 

very common in practice. Different research projects have been started 

to investigate the dynamics of seals by theoretical models as well as 

experimental procedures. The following chapter presents a possible mo

del, based on a bulk flow theory and describes an experimental proce

dure to identify the stiffness, damping and inertia coefficients. 

Modelling of Annular Seals with Turbulent Flow Conditions 

Seal model. To explain the seal model, we consider a very simple 

geometrical form, consisting of a cylindrical shaft with circular cross 

section, surrounded by a cylindrical housing (Fig. 2). This annular 

seal seperates the two chambers with pressure p1 and pressure p2 , re

spectively. The pressure difference is ßp = p1-p2 • Caused by this pres

sure difference there is a leakage flow in axial direction, which is 

always almest a turbulent flow with average velocity V. A velocity in 

circumferential direction is superimposed due to the rotation of the 

shaft with angular of Velocity n. In order to obtain the governing 
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PRESSURE p1 PRESSURE p1 

' 
TURBULENT LEAKGAGE FLOW HOUSING 
WITH AVERAGE VELOCITY V 

Fig . 2 Modelling of an Annular Seal with Turbulent Flow 

equations for the presented seal we assume pure translational movements 

of the shaft in radial direction. 

To derive the pressure areund the shaft and then the force-motion

relationships for the vibrating roter we are using a bulk flow model, 

which was originally derived by Hirs /1/. Childs /2/ introduced this 

bulk flow theory for seal elements. The first basic idea of this theory 

is, that the fluid velocity distributions in radial direction are sub

stituted by average velocities. For a fluid element between the roter 

and stator surface (Fig. 3), located at the axial coordinate Z, and the 

circumferential coordinate 9, the average axial velocity is U (Z, 9, t) z 
and the average circumferential velocity is u9(z, 9, t). The corre~ 

sponding pressure for this location is p(Z, 9, t) and the seal radial 

clearance H(9, t). The shaft circumferential Velocity is u =Rn. 

The secend basic assumption in Hirs theory is bis empirical find

ing, that the relationship between the shear stress at the wall and the 

mean velocity of the bulk flow - relative to the wall - can be expres

sed by well known formulas. With the bulk flow velocity V~={(u9-Rn) 2 
+ U 2} relative to the roter surface we obtain the wall shear stress 

z 
at the roter 
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PRESSURE 

2H VR 
TR = n (--) 

0 \) 

L 

m 
0 

U- RQ 

Fig . 3 Velocities, Pressure and 

Radial Clearance for a 

Fluid Element 

n , m are empirical turbulence coefficients, p is the fluid density 
0 0 

( 1 ) 

and v the kinematic viscosity of the fluid. In a similar way v8 
vi = {ue2 + uz2} is the bulk flow Velocity relative to the stator sur

face and the corresponding stator shear stress is 

2H v8 mo 
ts = no (-v-) (2) 

Formulas (1) and (2) correlate the shear stresses TR, T8 with the Rey

nolds numbers, which are defined in parantheses. 

We can now derive the two momentum equations, expressing the "equi

librium" for the fluid element in axial and circumferential direction 

(Fig. 4). If we introduce the shear forces at the walls, the pressure 

forces and the inertia forces we end up with the two equilibrium equa

tions (3) and (4), which are shown in Fig. 5 together with the conti

nuity equation (5) 
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Fig. 4 Pressure and Shear Forces acting on a Fluid Element 
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(3) 

(4) 

(5) 
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Reynolds number in circumterential direction 

Fig. 5 Governing Equations tor a Fluid Element 

Perturbation Analysis. With the assumption of small motions ot 

the shatt about a centered position we can expand the equations (3), (4), 
(5) by means of a perturbation analysis /2/ 

H (9 ,t) = Ho + 

p <z,e ,t > = Po + 

. Uz(Z,9,t) = 0zo + 

u9cz,e,t) = u90 + 

E H1 

E P1 

E 0z1 

E 0e1 

H =6ft 
0 

(6) 

E is a perturbation parameter. H0 , p0 , UZO' u90 are the quantities tor 
the zero eccentricity tlow condition (centered position ot the shatt). 

H1, p1, uz1, u91 correspond to the tlow conditions torsmall shatt mo

tions. 

It we introduce (6) into the governing equations (3), (4), (5) we 

obtain zeroth-order and tirst order perturbation equations. The sub

stitution and the solution procedures ot the remaining equations are 

very extensive. They are described in more detail in /2/ and /3/. In 

this presentation we discuss only the essential results. 

The solution ot the zeroth-order equations (E: = O, shatt without 

radial motion) detines the steady state leakage or the pressure drop flp 

in axial direction (Fig. 6) 

(7) 
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The pressure drop Ap is proportional to p and the squared velocity V 

and consists of three parts. The first one shows the change of pressure 

energy to kinetic energy. The second part points out the pressure loss 

at the seal entrance and the third part expresses the pressure drop 

1lll u. 

-1" 
__...- PRESSURE DROP llp- P. ·1> 
~ I I 

PRESSURE p1 

Fig. 6 Pressure Drop in Axial Direction 

along the seal, caused by friction. The seal behaves like a hydrostatic 

bearing. A static displacement of the shaft in radial direction causes 

a restorins force and the fluid acts like a spring. The second important 

result of the zeroth-order equation is the development of the circum

ferential velocity of a fluid element proceeding axially along the seal. 

This velocity influences the cross coupled stiffness coefficients. 

The first order equations describe the pressure and flow quantities 

due to a small shaft motion H(6,t) about the centered position. These 

equations can be solved numerically. When we introduce a circular bar

monie orbit as a special motion, we can express H(6,t) in terms of this 

motion. By the fUrther assumption of a harmonic pressure and velocity 

distribution in circumferential direction, the first order equations can 

be reduced to a system of three coupled complex ordinary differential 

equations for the unknowns UZ 1' u61 , p1 /2/, /3/. From the pressure field 

solution the reaction forces acting on the rotor due to the circular 
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shatt motion have to be determined by integration of the pressure along 

the.seal andin circumferential direction. Finally the force motion re

lationship is established. The dynamic system of a seal can be modeled 

by a linear system with stiffness, damping and inertia terms, if small 

movements about the seal centre are assumed (Fig. 7). 

F y 

F 
z 

= 
m zz 

c c y 
YY yz 

+ 
c c zy zz 

+ 

k k 
YY yz 

k k zy zz 

y 

(6) 
z 

In general a numerical procedure is needed to calculate the dynamic coef

ficients of equation (6). For the special case of a short seal a solu

tioninan analytical form is possible /4/, /5/. 

Fig. 7 Dynamic Seal Forces caused 

by Small Shaft Motions about 

a Centered Position 

The main diagonal elements in each of the matrices are equal and the 

cross-coupled terms are opposite in sign. Tbe coefficients are mainly 

dependent on the pressure drop, the averageaxial velocity V, the ro

tational speed 0 of the shatt the seal geometry ( seal length L and Ra

dius R) and on some quantities cbaracterizing the friction in a seal. 

It is important to note, that the cross coupled stiffnesses kyz = - kzy 

are strongly influenced by the rotational speed 0 and the fluid entry 

swirl, which is the circumferential velocity ot the fluid at the seal 



www.manaraa.com

Identification of Seal Coefficients 551 

entrance. This effect may cause serious instability problems in high 

speed rotating machinery, when the cross coupled stiffness terms become 

dominant. 

In one of his first publications about seals, Black /6/ has derived 

stiffness, damping and inertia coefficients for short seals. Fig. 8 

presents this coefficients in dependence of the most important influence 

parameters ßp, V, Q, T = 1/V and some friction coefficients ~O' ~l' ~2 • 

In Blacks derivatives the entry swirl was assumed to be half of the cir-

PRESSURE DROP 
AVERAGE AXIAL VELOCITY 
AVERAGE FLOW TIME 
ROTATIONAL SPEED 

6p 
V 

T: L/V 
n 

0 

K. 

Fig. 8 Dynamic Coefficients of a Short Seal /6/ 

cumferential velocity of the shaft Rn/2. 

With the a priori knowledge about the seal dynamic coefficients we 
have valuable informations about the structure of the model (linearity, 

order of the model, skewsymmetric etc.), which will be used in the fol

lowing parameter identification procedure. 

Identification of the Dynamic Seal Coefficients 

Most of the experimental methods to determine dynamic coefficients 

of bearings or seals are working with test forces (input signals) and 
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are measuring the relative displacement between shaft and housing (out

put signals). The unkDown seal parameters can then be calculated by 

means of input-output relations in tbe time domain or in the frequency 

domain (Fig. 9). 

SYSTEM: SEAL 

INPUT 

FORCES 

PARAMETER kn,k .... c,., c ... ,m",m., 

IDENTIFICATION PROBLEM . 

TO FIND THE PARAMEl'ERS OF THE SEAL 
FR().! INPUT- OUTPUT- RELATIONS 

OUTPUT 

DISPLACEMENTS 

Fig. 9 Identification of the Parameters of a Seal 

The basic steps of the applied identification procedure are pointed 

out in Fig. 10. Measurements are carried out at a test rig, that con

sists of a very stiff rotating shaft and an elastically mounted rigid 

housing with two symmetric seals between shaft and housing. Water flows 

axially across the two seals in opposite directions, while the shaft ~s 

running with a fixed rotational speed n. The housing is excited by a 

test force and the system response is measured as a radial motion bet

ween the seal surfaces. From measured input and output time signals 

frequency response functions can be determined by signal processing. 

Corresponding to the seal test rig a linear mechanical model ex

cists, consisting of the rigid mass (housing) and the stiffness and 

damping coefficients of the seals. The analytical frequency response 

functions of the model depend on the unkDown seal parameters, which 

have to be determined. 
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MODEL MEASUREMENT 

IIENlFCATION OF DYNAMIC SEAL COEFFICIENTS 

CRITERION : IS CORRELATION BETWEEN MEASUREMENT 
ANO MODEL GOOD ? 

RESULTS 

Fig. 10 Basic Steps of the Identification Procedure 
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The dynamic seal coefficients are estimated by a linear procedure 

and uses the measured mobility frequency response function and the ana

lytical functions of the model. The main steps of the identification 

are following in more detail. 

Mechanical model. Fig. 11 shows the mechanical model with a ri

gidly supported very stiff shaft the rigid mass m of the housing and 

the stiffness and damping coefficients elements corresponding to the 

seals and the flexible springs supporting the casing. If test forces 

are acting in the center of the housing, the system responds only with 

translatory motions in the two directions y and z. The equations of mo

tion for the model 

m +2m y 
yy 

m +2m z 
zz 

c 

+2 

c 

c y 
yy yz 

+2 

c z zy zz 

k k y F yy yz y 
= 

k k z F zy zz z 

(9) 
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Fig. 11 Mechanical Model of the Seal Test Rig 

R. Nordmann 

describe the equilibrium of the inertia forces (housing), the seal 

forces and exciter forces. 

For the considered two degree of freedom test rig system a total 

of four stiffness frequency functions as well as four flexibility fre

quency tunctions can be derived. They depend on the seal coefficients 

and the exciter frequency w, as well. The exciter frequency w is usually 

different from the frequency of rotation 0 . Fig. 12 points out the mathe

matical expressions of the two types of frequency response functions 
~ . . 

Hlw) and K(w). By inversion of tbe frequency response H(w) we obtain the 

;tiffness-response !Tw). Both functions are used in th: identification 

procedure. 

Measurements of tbe Freguency Response Functions H1w). Up to now 

we have considered frequency response functions of the model. For the 

determination of the frequency response functions from measured input 

and output time data, we take advantage of the fact tbat the ratio of 

tbe Fourier transformed signals is equal to the frequency response. Due 

to this possibilities excitation signals with broadband character in 

tbe frequency domain (impact, random etc.) can also be applied. 
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COMPLEX FLEXIBILITY FREQUENCY RESPONSE Hik(w) 

.. 
H = 

6 = (k -w2(=+2m m )+iwc )(k -w2(-+2m m )+iwc )-(k -iwc )(k +iwc ) yy yy yy zz zz zz yz yz zy zy 

CO~~LEX STIFFNESS FREQUENCY RESPONSE Kik(w) 

... 
K = 

Fig. 12 Frequency Response Functions H(w) and K(w) 

of the Mechanical Model 

The force and response signals are measured in the time domain, trans

formed to the frequency domain by means of Fast Fourier Transformation 

and the quotient is calculated (Fig. 13). This procedure is executed by 

efficient two channel Fourier Analyzers. Fig. 14 shows in principal the 

measurement equipments. A hammer was used in this case to excite the 

housing by an impulse force (see also Fig. 13). By this excitation the 

signal contains energy in a desired frequency range, which can be in

fluenced by the hammer mass, the flexibility of the impact cap and the 

impact velocity. The relative displacements between housing and shaft 

are measured with displacement pick ups. The time signals are amplified, 

digitized by the analyzer and the frequency response functions are cal-
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Fig. 13 Measured Frequency 
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Fig. 14 Measurement Equipments 
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culated. 

Estimation of the Pynamic Seal Coefficients. Different possibili

ties excist to determine the seal coefficients from measured frequency 

response curves. One idea is to fit analytical flexibility functions to 

the measured ones. When working with the output error, this leads to 

nonlinear equations for the unknown parameters. Another method will be 

presented here with the definition of an error for the input signals. 

From a theoretical point of view the product of the complex mobi

lity matrix » and the complex stiffness matrix K should be the unity 

matrix ~· By combining the measured matrix ~ with the analytical matrix 

K the result will be K plus an additional error matrix ~' caused by 

measurement noise. Fig. 15 points out this fact and shows either the 

complex equation or the two real equations for the unknown parameters, 

concentrated in !!• f, !-• The two real equations belong to one exciter 

frequency. In the case of broadband excitation (impulse force) we have 

I PARAMETER - ESTIMATION 

·EB·EB 
I K - .JM • iwC I • H - - - - E • s 

!51!'-w1 ~ !:!'- wflf g•§' 
K H'- .J~ Ii' • wflf: S' 

Fig. 15 Parameter Estimation 

as much equations as frequency lines, generally much more, than unkDown 

parameters. The overdetermined equation system is presented in Fig. 16. 

The reetangular matrix ! contains al1 information about the measured 
_.r i 

frequency response functions (~ , H real and imaginary part of fre-
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quency response) and the related exciter frequencies w. ~ contains the 

unknown matrices ~. E• ~ and ~· is a modified unity matrix. Applying the 

EQUATIONS FOR THE DETERMINATION 
OF UNKNOWN SEAL PARAMETER X 

A CONTAINS THE MEASURED FREOUENCY RESPONSE DATA Hiwi 

X CONTAINS THE UNKNOWN PARAMETERS M. D, K 

CRITERION :;?'-MINIMAL 

NORMAL EOUATIONS 

Fig. 16 Normal Equations for Unknown Parameters 

criterion to this equation, that S' shall become a minimum, we find the 

so called normal equations. This is a determined system of equations 

for the twelve unknown seal parameters in the matrices ~· ~. ~· Caused 

by the definition of an input error the solution procedure for the li

near system may fail. This can be avoided by introducing instrumental 

variables /6/. In this case the matrix ~T is substituted by a matrix ~T. 
containing the instrumental variables. In our case they have the meaning 

of the frequency response data, determined with the estimated dynamic 

coefficients from a previous step. Then the solution is found by an ite

rative procedure. 

Test Rig and Some Measurement Results 

Seal Test Rig. The mechanical part of the test facility is shown 

in Fig. 17. The main components are a very stiff rotating shaft, driven 

by a speed controled motor and the stiff housing, supported in flexible 

springs. The shaft is rigidly supported in roller bearings. The fluid 

enters the housing in the center, flows across the two seals in axial 

direction and is exciting the housing at the two ends. With removable 
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:J ;' . 

HOUSING SEA L 

Fig . 17 Seal Test Rig 

stator parts of the seal different geometrics and roughnesses can be 

realized. The static position (zero eccentricity) is adjusted by a spe

cial mechanism and measured by eddy current pick ups, which are also 

used to measure the shaft motions. 

The range for the rotational speed is from 0 to 6000 rpm and for 

the axial fluid velocity from 0 to 14m/sec. With this we achieve Rey

nolds numbers up to 15000, when the fluid temperature is about 30° Cel-

sius. 

Dynamic measurements. In case of a dynamic measurement four fre

quency response functions have tobe determined for one measurement set, 

defined by a working condition with constant axial fluid velocity, ro

tational speed and fluid temperature. A computer takes over the measured 

data and calculates the dynamic coefficients by means of the described 

estimation procedure. Both sets of frequency response functions, the 

measured and the fitted one, can then be displayed and plotted. 
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Some Measurement Results. The process of the dynamic measurement 

is demonstrated for one working condition with V= 12m/sec, n = 3450 

rpm and a temperature of 30° Celsius. Fig. 18 shows the corresponding 

u = 3450 l/min, v = 12 m/sec, 

... 
rr•qu•"""~ UizJ 

... 

... 

Fig. 18 Measured and Fitted Frequency Response Functions 

measured and fitted response functions as magnitudeand phase character

istics in the frequency range 0 to 100 Hz. The two direct functions H yy 
and H should be equal and the cross coupled functions H and H zz yz zy 
should be equal in magnitude but opposite in phase. The correlation 

between fitted and measured functions is more or less good. 

Several measurements were carried out for different rotational 

speeds with constant temperature and axial velocity. For each set of 

functions the inertia, damping and stiffness coefficients were calcu

lated. They are shown in Figures 19, 20 and 21 versus the rotational 

speed. The values for the complete system with two seals and all known 

additional terms (mass of the housing, soft springs etc.) are presented. 

It was found, that the direct coefficients are not equal, furthermore 

the expected skewsymmetry could not be found exactly in the measured 
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results. The coefficients, which should be equal in magnitude are shown 

in one diagram and treated as two values for the same Operating condi

tion. Besides the measured coefficients the corressonding values of the 
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above mentioned theoretical model are also shown. 

The correlation is not that good for the stiffness terms, which 

are presented in Fig. 19. The dependence on the rotational speed is 

reasonable for both quantities, a parabolic decrease for the main stiff

ness and a linear increase for the cross coupled terms. However, the 

main stiffnesses are found out 40 to 50 % to small and the cros5 coupled 

terms much more than this. Meanwhile it is known, that the reason for 

the small measured cross coupled terms is the low entry swirl in the 

test rig, which has a large influence on k and k • 
yz zy 

Fig. 20 shows the damping values. The theoretical model predicts 

nearly constant values for the main damping and an increase with rota

tional speed for the cross coupled terms. The correlation between meas

urements and predictions are good to fair. 

Finally the total inertia terms are presented in Fig. 21. The 

theory predicts constant inertia terms. The correlation of measured and 

calculated values looks good. However, it has to be noted, that the 

mass of the housing is approximately 15 kg. This mass is included in 

the results. Therefore the relative error of the seal inertia coeffi

cients, related to the model prediction, is much higher. 
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IDENTIFICATION OF MODAL PARAMETERS OF AN 
ELASTIC ROTOR WITH OlL FILM BEARINGS 

R. Nordmann 
University of Kaiserslautern, Kaiserslautern, F.R.G. 

Introduction 

The dynamic behavior of many rotating machlnes e.g., turbines, 

compressors, pumps is influenced by stiffness and damping characteris

tics of nonconservative effects like oil film forces, forces in seals 

etc. It is important to know that besides the forced unbalance vibra

tions also unstable Vibrations may occur, caused by the abovementioned 

selfexciting mechanisms /1/. To have a better understanding of the vi

bration behavior of rotating systems, the knowledge of the modal para

meters - eigenvalues and eigenvectors - is very valuable. 

Calculation procedures exist, for example, the finite element me

thod, to determine the modal parameters in designstage /2/. But the in

put data for the calculation are not exactly known in any case and the 

predicted eigenvalues and eigenvectors may be different from those of 

the real machine in operation. Therefore mechanical engineers also try 

to find the modal parameters of built rotating machines or test rig ro-
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tors by measurements /3/. 

In the past years the powerful method of experimental modal ana

lysis has been used to measure modal parameters in many engineering 

problems /4/. The method was mainly applied to nonrotating structures 

without destabilizing effects. A successful application of the method 

in rotating machines requires some improvements of the classical ex

perimental modal analysis. In /5/ such improvements were described and 

a very simple rigid rotor in oil film bearings was investigated. In 

this paper a more complicated application is given, dealing with an 

elastic test rig rotor in oil film bearings. The essential eigenvalues 

and the corresponding eigenvectors (natural modes) could be found by 

experimental modal analysis. 

Fig. 1 Turbopump rotor 

Natural Vibrations of an Elastic Rotor in Journal Bearings 

Mechanical Model. Figure 1 shows a typical rotating machine, a 

turbopump rotor, consisting of an elastic shaft with an impeller mass 

in the middle of the shaft. The rotor is running in oil film journal 

bearings. To measure modal parameters of sucb a rotating shaft is not 

easy, because there are only a few points along the rotor to excite the 
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rotor and to measure the system response. A systematic investigation of 

the vibration behavior of the machine during operation with all effects 

(oil film forces, hydraulic forces) is difficult to realize. In a first 

step we consider a simpler rotor system similar to that of the turbo

pump rotor. Figure 2 sh~ws this test rig rotor with an elastic shaft, 

a disk, and two oil film bearings. The modal parameters of this elastic 

system can be measured in a systematic manner. All of the rotor loca

tions can be excited and the displacements can be picked up at all lo

cations. However, it has to be noted that not all of the effects of the 

real machine can be investigated with the test rig rotor. 

01. FILI1 
BEARtrc; 

ELASllC SIW'T 

)______ 500 -----+-------

Fig. 2 Test rig rotor 

llfARIII; CENTER 
\ 

Fig. 3 Vibrations of the journal 

tll FIL11 
8EARII; 
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From the theoretical considerations it is known, that for small 

Vibrations of the journal araund a static equilibrium position, the 

following forcerelationship for the oil film is true (Fig. 3). 

with 

kik stiffness coefficients of the bearings 

bik damping coefficients of the bearings 

( 1 ) 

The stiffness and damping coefficients depend on the Sommerfeld number, 

and on the rotational speed, respectively. Besides anisotropy, the stiff

ness cross coupling terms are unequal in general. This unsymmetry is the 

reason for selfexcited bending vibrations of the shaft. 

Equation of Motion. The equations of motion for the simple shaft 

(Fig. 2) express the equilibrium of inertia, damping, stiffness, and 

external forces 

(2) 

M mass matrix 

D damping matrix -
K stiffness matrix -
q vector of displacements 

f vector of external forces 

The matrices ~ and ! contain stiffness and damping terms from the bea

rings. They are nonsymmetric and depend on the running speed of the ro

ter. 
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Natural Vibrations, Eigenvalues, and Natural Modes. From the ho

mogeneous equations of motion (f = 0) the natural vibrations can be 

calculated. Assuming a solution of the form 

q( t) At 
<p e 

we obtain a quadratic eigenvalue problern 

(3) 

( 4) 

with 2N eigenvalues A. and corresponding eigenvectorsq~ .• Eigenvalues as 
J -J 

well as eigenvectors in the most cases occur in conjugate complex pairs 

Eigenvalues: A. = «. + iw. A. = o(. - iw. 
J J J J J J 

(5) 

Eigenvectors: <p • s. + it. <!>· = s. - it. 
-J -J -J -J -J -J 

We consider only the part of the solution, which belongs to a conjugate 

complex pair 

a.t 
q.(t) = B.e J {s.sin(w.t+y.) + t.cos(w.t+y.)} 
-J J - J J J -J J J 

(6) 

w. is the circular natural frequency of this part and a. the damping 
J J 

constant. If the damping constant a. > 0 the natural Vibrations increase, 
J 

for a. < 0 the natural vibrations decrease. 
J 

We define the expression in parantheses { } of equation (6) as 

natural mode. Opposite to conservative system there is no constant mo

dal shape, proportians and relative phasing i~ general vary from point 

to point at the shaft. The natural modes of nonconservative systems re

present time dependent curves in space. The plane motion of one point 

of the shaft is an elliptical orbit. 

If we transpese the matrices M, ~. ~. we obtain the so called left-
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hand eigenvalue problern 

(7) 

which has the same eigenvalues A but different eigenvectors ~· Both 

eigenvector sets are needed for an expansion of the frequency response 

functions in terms of the modal parameters. 

Identification of Modal Parameters of Rotors 

It i~ well known that experimental modal analysis has been often 

used in many mechanical engineering problems to identify modal parame

ters of nonrotating elastic systems. Application of the method ~n ro

tating machines with nonconservative effects requires consideration of 

some important differences, for example 

- the nonsymmetry of the system matrices ~. ~ 

- the dependence of the modal parameters from the Operating speed 

- the necessity to excite the rotor and to measure the response 

during rotation 

In consideration of these differences the modal analysis procedure is 

also available for rotating structures (Fig. 4). The procedure consists 

of the following steps: 

Between a nurober of measurement points frequency response functions 

~1{n) are measured at the real structure, by exciting the system at 

locations 1 and measuring the response at locations k. 

Analytical frequency response functions can be calculated in depen

dence of the eigenvalues, left-hand and right-hand eigenvectors. 

Finally the analytical functions are fitted to the measured func

tions by variation of the modal parameters, reßulting in a set of iden

tified modal parameters. 
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MODEL MEASUREMENT 

~ ~- 9-tS 
M~·Dq•KQ=f 

-

if, 
- ANALYTICAL FREO~RESPDNSf MEASURED FRE Q.-RESPON SE 

H~, lfi.HODAL PARAME TERS) H~1 lfll 

IOENTIF ICATION OF MODAL PARAMETERS !CURVE FITTit>l;l 

- CRITERION ' IS AliREEMENT OF i'WEL ANO MEASLI<S1ENT -
(jQOD? 

'--- - CALCULATION OF 1-f:W I NO j YES 
RESULTS I MODAL PARAMETERS I I 

Fig. 4 Identification of modal parameters 

Analytical Freguency Response Functions. If the rotor is excited 

ln a certain point l by means of a harmonic force function r1 with ex

citer frequency ~ and the displacement qk ls measured in another point 

k, the response behavior of the rotor can be characterized by the com

plex frequency response function (Fig. 5). 

11 = f1sin0 t 

Fig. 5 Input and output signals at the rotor 
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(8) 

respectively by the ratio of the amplitudes qk/f1 and the phase Ekl bet

ween the two signals. Both are frequency dependent functions. 

In /5/ is shown that the complex frequency response functions can 

be expressed in terms of the eigenvalues A. and the corresponding eigen
J 

vectors <p. , 1jJ •• 
-J -J 

( 9) 

For a rotor with N degrees of freedom N x N frequency response func

tions exist, assembled in the matrix ~ (Fig. 6). It is important to 

note that each row ~k contains all of the left eigenvectors !j and each 

column §1 contains all of the right eigenvectors ~· 

FREOUENCY RESPONSE MATRIX 

H" H12 ... Hn . ... H,N 
H21 

H" {Q} = 
: 

Hk1 Hkl Hkl .... 

~1 .... HNN 

T 
Z=r 
-k J 

~T 
(iQ-X) !J 

J 

Fig. 6 Matrix o~ ~requency response ~unctions 
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z T q> k 1 T q> k2 T 
= --lji +-.--lji + ... 

-k H"I-.A 1 -1 lS"l-\2 -2 
( 10) 

~l 
ljil1 ljil2 

= -- q> + iS"l-\2 !2 + ... 
iS"l-.A -1 1 

( 11 ) 

One row ~k and one column §1 of the frequency response matrix ~ need 

tobe measured in order to identify all of the modal parameters .A., Q>·• 
J -J 

lji. of a rotor (Fig. 7). It is sufficient to measure only one column, if 
-J 
eigenvalues and right eigenvectors are required. For determination of 

eigenvalues .A. without natural modes, the whole information is contained 
J 

in one frequency response ~l already. There are exceptions, if the 

points of excitation or response are identical with node points of the 

natural modes. 

FORCE DISPLACEMENT 
TRANSOUCER PICK UP 

IHEAUSUREHENT OF A COLUHN I 

EXCITATION AT LDCATION I 
HEASUREHENT OF DISPLACEMENT 
AT ALL OTHER LOCATIONS 

FORCE DISPLACEMENT 
TRAtiSDUCER PICK UP 

IHEAUSUREHENT OF A ROW 

EXCITATION AT ALL LOCATIONS, 
HEASURENT OF DISPLACEMENT 
AT LOCATIO N k 

Fig. 7 Excitation and response locations 

Measurements of the Freguency Response Functions. As pointed out, 

the modal parameters of rotating structures can be determined from a set 

of frequency response functions. The measurement of these frequency res

ponse functions is an important step of modal analysis. Several experi-
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mental methods exist for acquiring this information. Usually measurements 

are made by applying the force input artificially through some type of 

exciter. As mentioned previously, one could excite the system with bar

monie forces and measure the system response (amplitude and phase). But 

sine testing is slow compared to other types of signals, since it only 

excites the structure at one frequency at a time. Other types of exci

tation, signals like impact and random forces are considered to be the 

most useful today. They have a broadband characteristic in the frequency 

domain and measurements can be carried out in a relatively short time. 

Basically frequency response functions may be computed directly 

from the ratio of the Fourier transforms of the measured output and in

put signals. This Fourier Transformation theorem permits replacement of 

the time consuming frequency by frequency excitation technique by the 

excitation with an arbitrary signal. The only requirements are, that the 

signals be Fourier transformable. Recent developments in the area of di

gital signal processing, especially progress of Fast Fourier Transform 

algorithms enabled the successful application of this technique. 

The employed measurement method consists of applying an impact 

forcing function f 1 to a point l of the structure while picking up at 

the sametime the displacement qk, of point k (Fig. 8). The time sig

nals are transformed to the frequency domain by means of the Fast Fou

rier Transformation and the ratio is calculated. 

The frequency content and the amplitude of the force signal can be 

influenced by selection of the hammer mass, the flexibility of the im

pact cap and the impact velocity. With a short impulse the energy is 

distributed ln a wide frequency range, with a lang impulse in lower fre

quencies. 

Figure 9 shows the measurement equipment. The hammer excites the 

rotating shaft and the force is measured by means of a force transducer 

or an accelerometer. The displacements of the shaft can be picked up by 

capacitive or inductive pickups. Force and displacement signals are amp-
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lified and after analog-digital-con~ersion and Fast-Fourier-Transforma

tion the frequency response functions can be calculated. They are stored 

on a magnetic tape for further treatment. 

I INPUT I OUTPUT 

Fig. 8 Measurement of frequency response functions 

DISPLACEMENT 
PICK UP 

Fig. 9 Measuring device 

FOURIER ANALYZER 
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Modal Parameter Estimation. Different shopisticated techniques are 

available to estimate modal parameters from frequency response data. 

Which one is the most suited in a special case depends on the degree of 

modal coupling. 

At any given frequency n the frequency response represents the sum 

of all the modes of vibration which have been excited (equation (9)). 
Normally the contribution of a particular mode is the greatest near its 

natural frequency. When modal coupling is light, the frequency response 

can be considered in the vicinity of a resonance as if it were a single 

degree of freedom system. The simplest approach to determine modal para

meters of such systems with well separated modes is to pick up natural 

frequencies and amplitudes at the resonance locations. 

The investigated rotor bearing system has heavy modal coupling. In 

this case a more sophisticated technique to extract modal parameters is 

a multidegree of freedom curve fit, based on equation (9). Within a li

mited frequency range the goal of the procedure is to find the complex 

modal parameters A1 , ~·· The basic idea consists of finding a best fit 
u -J 

between the measured response plot and the generated plot from the ana-

lytical expression (9). A well known method for doing this is to use a 

least squares procedure. The criterion is to minimize the error func

tion 

p 
M A 2 E = E {RE(Hkl (np) - RE(Hkl (np,Aj'!J))} 

p 
(13) 

p 
M A 2 

+ E {IM(Hkl (np)- IM(Hkl (np,Aj'~))} 
p 

HklA analytical frequency response expression 

RlM d ~ k measure ~requency response 
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P is the nurober of frequency lines in the measured frequency response 

functions. 

577 

Differentiating E with respect to each unknown in turn and setting 

each result to zero, we obtain a nurober of equations for the unknown 

modal parameters. The equations are nonlinear in the eigenvalue parts, 

therefore they are solved by an iterative procedure (linearization). 

After each step the variation of the error function is controlled. At 

the beginning of the procedure a starting vector of the unknowns must 

be chosen. The process is repeated for further measured frequency cur-

ves. 

Example - Modal Parameters of an Elastic Rotor in Journal Bearings 

Rotor Test Rig. For testing the method, measurements were carried 

out at the test rig rotor shown in Fig. 2, respectively, Fig. 10. The 

rotor consists of a cylindrical shaft (diameter 50 mm, length 1000 mm) 

with a disk (mass 55 kg, diameter 300 mm, width 100 mm) at the center 

of the shaft. The shaft is driven by a d-c electric motor with control. 

Fig. 10 Rotor test rig 

The two oil film bearings are cylindrical bearings with a length-dia-
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meter ratio B/D = 0.8. 

Seven measurement points were established along the rotor axis. 

At each measurement point excitation by impact forces and measuring the 

system response is possible in vertical as well as horizontal direction. 

The hammer for pulse excitation has a mass of 1.5 kg. The displacement 

pickups are movable along the rotor. Measured quantities are the ex

citing force, the displacements of the shaft and the rotor speed. 

Measurement Results. For the nonrotating shaft (w = 0) there is 

no oilfilm effect in the bearings and the system can be considered as 

a flexible shaft with rigid bearings. The results from experimental mo

dal analysis are shown in Fig. 11. The natural frequency of the first 

bending mode is 42.5 Hz. The second bending mode has a comparatively 

high frequency of 221 Hz. 

f' "El" i _: ... _ .. __ ·w- .__-
1. NAT~ HCXlE 42.5 Hz 

2. NATURAL HOOE 221 Hz 

Fig. 11 Natural modes of the shaft with rigid bearings 
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It is important to know the first natural frequency of the rigidly 

supported shaft. With this information the natural frequency of the 

shaft in oil film bearings can be estimated. The flexibility of the oil 

film lowers the natural frequency. Therefore it is to be expected, that 

the first bending natural frequency of the rotor in journal bearings is 

less than 42.5 Hz. Furthermore it is known that the instability onset 

speed is about two times the first natural frequency. 

A number of frequency spectra from 0 to 100 Hz are shown in Fig. 

12 for different rotating speeds between 50 Hz and 77.5 Hz. The frequen

cy spectrum for each rotor speed was found by impacting the rotor at the 

disk and measuring and analyzing the response signal near the bearings. 

Fig. 12 Frequency spectrum of the test rig rotor 

For lower rotating speeds there is one peak at 37 Hz, which is 

identical with a systemnatural frequency. The second peak is caused by 

unbalance excitation. The frequency at this peak is the frequency of 

rotation. For higher speeds the frequency spectra show two natural fre

quencies between 30 Hz and 40 Hz and the unbalance response peak with 

decreasing amplitudes at increasing rotational frequencies. The growing 
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peak at about 33 Hz shows that the rotor is running near the instabili

ty onset speed between 75 and 80 Hz. 

Natural frequencies and damping constants can be determined appro

ximately with the frequency spectrum. To get better results for system 

eigenvalues and eigenvectors, frequency response functions are used. 

For the described rotor in cylindrical bearings measurements were car

ried out in a speed range from 60 to 75 Hz. Because of the variation of 

eigenvalues and natural modes with rotor speed, the rotational frequency 

need tobe constant during the measurements. For each rotor speed one 

column of the frequency response matrix was calculated from the corres

ponding measured time signals. In Fig. 13 the amplitude frequency cha

racteristic of one of the frequency response functions is represented 

for a rotational speed of 70 Hz. The upper diagram shows the measured 

funetion, the lower the calculated function. There are two resonance 

peaks at 33 Hz and 37 Hz. 

MEASURED 
FREOUEN:Y 
AESI'ONSE 

ANALYTICAL 
FREQUBLY 
RESPONSE 

1ois3o351o01.i !iö 
FREQUENCY (Hz) 

Fig. 13 Comparison of measured and calculated frequency response 
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From measurements for different rotating speeds the two essential 

eigenvalues (natural frequencies and damping constants) were identified 

by the above described curve fitting procedure. Figure 14 shows in the 

complex plane the natural frequencies versus the damping constants, re

spectively imaginary parts of eigenvalues versus real parts. Parameter 

is the rotating speed of the shaft. There is only a little influence 

from the speed to the natural frequencies. The first natural frequency 

is about 33 Hz, the second 37 Hz. 

75 70 65 60 
~ ..... w 

RIGID 
BEARING 

• .5! 
,--~~ -

m I 70 I !i!?;i 
66 75 ~ 

~TATIONAL ... ~ 
FREQUENCY (Hz] 

~ CONST~~ [Hz) f 
Fig. 14 Eigenvalues of the test rig rotor 

It is important to note that the damping constant of the first 

eigenvalue tends to zero for increasing speeds. At the stability thres

hold speed - 78 Hz the damping constant disappears. The rotor is un

stable for higher speeds. 

Besides the eigenvalues also the eigenv~ctors were identified. 

Figure 15 pointsout the two natural modes, as defined in equation (6), 
for a frequency of rotation of 70 Hz. 

The natural modes represent time dependent curves in space. The 

plane motion of one point of the shaft is an elliptical orbit. 
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/ 
II) 

1. NATURAL MODE 

2. NATURAL MODE 

Fig. 15 Natural modes of the test rig rotor 

Forward precession appears in the first natural mode with a natural 

frequency of 33 Hz. This eigenvalue leads to instability. In the secend 

natural mode with backward precession and a natural frequency of 37 Hz 

the damping constant increase with the rotational frequency. 

Conclusions 

In this paper an application of experimental modal analysis is gi

ven for rotating machines. It is. shown, that the classical method has 

to be improved in the case of nonconservative rotors with unsymmetric 

matrices. In the special case of a simple elastic sbaft with oil film 

bearings the complex eigenvalues, the natural modes and the instability 

onset speed could be determined. The measured results are in good cor

relation with theoretical values. 

The application of the suggested procedure in practical cases ~s 
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possible if suitable locations for excitation exist and the input ener

gy is high enough to excite the essential natural vibrations. 
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